Files
langchain/libs/community/langchain_community/document_loaders/apify_dataset.py
Harrison Chase 8516a03a02 langchain-community[major]: Upgrade community to pydantic 2 (#26011)
This PR upgrades langchain-community to pydantic 2.


* Most of this PR was auto-generated using code mods with gritql
(https://github.com/eyurtsev/migrate-pydantic/tree/main)
* Subsequently, some code was fixed manually due to accommodate
differences between pydantic 1 and 2

Breaking Changes:

- Use TEXTEMBED_API_KEY and TEXTEMBEB_API_URL for env variables for text
embed integrations:
cbea780492

Other changes:

- Added pydantic_settings as a required dependency for community. This
may be removed if we have enough time to convert the dependency into an
optional one.

---------

Co-authored-by: Eugene Yurtsev <eyurtsev@gmail.com>
Co-authored-by: Bagatur <baskaryan@gmail.com>
2024-09-05 14:07:10 -04:00

83 lines
2.9 KiB
Python

from typing import Any, Callable, Dict, List
from langchain_core.documents import Document
from pydantic import BaseModel, model_validator
from langchain_community.document_loaders.base import BaseLoader
class ApifyDatasetLoader(BaseLoader, BaseModel):
"""Load datasets from `Apify` web scraping, crawling, and data extraction platform.
For details, see https://docs.apify.com/platform/integrations/langchain
Example:
.. code-block:: python
from langchain_community.document_loaders import ApifyDatasetLoader
from langchain_core.documents import Document
loader = ApifyDatasetLoader(
dataset_id="YOUR-DATASET-ID",
dataset_mapping_function=lambda dataset_item: Document(
page_content=dataset_item["text"], metadata={"source": dataset_item["url"]}
),
)
documents = loader.load()
""" # noqa: E501
apify_client: Any
"""An instance of the ApifyClient class from the apify-client Python package."""
dataset_id: str
"""The ID of the dataset on the Apify platform."""
dataset_mapping_function: Callable[[Dict], Document]
"""A custom function that takes a single dictionary (an Apify dataset item)
and converts it to an instance of the Document class."""
def __init__(
self, dataset_id: str, dataset_mapping_function: Callable[[Dict], Document]
):
"""Initialize the loader with an Apify dataset ID and a mapping function.
Args:
dataset_id (str): The ID of the dataset on the Apify platform.
dataset_mapping_function (Callable): A function that takes a single
dictionary (an Apify dataset item) and converts it to an instance
of the Document class.
"""
super().__init__(
dataset_id=dataset_id, dataset_mapping_function=dataset_mapping_function
)
@model_validator(mode="before")
@classmethod
def validate_environment(cls, values: Dict) -> Any:
"""Validate environment.
Args:
values: The values to validate.
"""
try:
from apify_client import ApifyClient
client = ApifyClient()
if httpx_client := getattr(client.http_client, "httpx_client"):
httpx_client.headers["user-agent"] += "; Origin/langchain"
values["apify_client"] = client
except ImportError:
raise ImportError(
"Could not import apify-client Python package. "
"Please install it with `pip install apify-client`."
)
return values
def load(self) -> List[Document]:
"""Load documents."""
dataset_items = (
self.apify_client.dataset(self.dataset_id).list_items(clean=True).items
)
return list(map(self.dataset_mapping_function, dataset_items))