- **Description:** ERNIE-Bot-Chat-4 Large Language Model adds the ability of `Function Calling` by passing parameters through the `functions` parameter in the request. To simplify function calling for ERNIE-Bot-Chat-4, the `create_ernie_fn_chain()` function has been added. The definition and usage of the `create_ernie_fn_chain()` function is similar to that of the `create_openai_fn_chain()` function. Examples as the follows: ``` import json from langchain.chains.ernie_functions import ( create_ernie_fn_chain, ) from langchain.chat_models import ErnieBotChat from langchain.prompts import ChatPromptTemplate def get_current_news(location: str) -> str: """Get the current news based on the location.' Args: location (str): The location to query. Returs: str: Current news based on the location. """ news_info = { "location": location, "news": [ "I have a Book.", "It's a nice day, today." ] } return json.dumps(news_info) def get_current_weather(location: str, unit: str="celsius") -> str: """Get the current weather in a given location Args: location (str): location of the weather. unit (str): unit of the tempuature. Returns: str: weather in the given location. """ weather_info = { "location": location, "temperature": "27", "unit": unit, "forecast": ["sunny", "windy"], } return json.dumps(weather_info) llm = ErnieBotChat(model_name="ERNIE-Bot-4") prompt = ChatPromptTemplate.from_messages( [ ("human", "{query}"), ] ) chain = create_ernie_fn_chain([get_current_weather, get_current_news], llm, prompt, verbose=True) res = chain.run("北京今天的新闻是什么?") print(res) ``` The running results of the above program are shown below: ``` > Entering new LLMChain chain... Prompt after formatting: Human: 北京今天的新闻是什么? > Finished chain. {'name': 'get_current_news', 'thoughts': '用户想要知道北京今天的新闻。我可以使用get_current_news工具来获取这些信息。', 'arguments': {'location': '北京'}} ``` |
||
---|---|---|
.. | ||
langchain | ||
scripts | ||
tests | ||
.dockerignore | ||
.flake8 | ||
dev.Dockerfile | ||
Dockerfile | ||
LICENSE | ||
Makefile | ||
poetry.lock | ||
poetry.toml | ||
pyproject.toml | ||
README.md |
🦜️🔗 LangChain
⚡ Building applications with LLMs through composability ⚡
Looking for the JS/TS version? Check out LangChain.js.
To help you ship LangChain apps to production faster, check out LangSmith. LangSmith is a unified developer platform for building, testing, and monitoring LLM applications. Fill out this form to get off the waitlist or speak with our sales team
Quick Install
pip install langchain
or
pip install langsmith && conda install langchain -c conda-forge
🤔 What is this?
Large language models (LLMs) are emerging as a transformative technology, enabling developers to build applications that they previously could not. However, using these LLMs in isolation is often insufficient for creating a truly powerful app - the real power comes when you can combine them with other sources of computation or knowledge.
This library aims to assist in the development of those types of applications. Common examples of these applications include:
❓ Question Answering over specific documents
- Documentation
- End-to-end Example: Question Answering over Notion Database
💬 Chatbots
- Documentation
- End-to-end Example: Chat-LangChain
🤖 Agents
- Documentation
- End-to-end Example: GPT+WolframAlpha
📖 Documentation
Please see here for full documentation on:
- Getting started (installation, setting up the environment, simple examples)
- How-To examples (demos, integrations, helper functions)
- Reference (full API docs)
- Resources (high-level explanation of core concepts)
🚀 What can this help with?
There are six main areas that LangChain is designed to help with. These are, in increasing order of complexity:
📃 LLMs and Prompts:
This includes prompt management, prompt optimization, a generic interface for all LLMs, and common utilities for working with LLMs.
🔗 Chains:
Chains go beyond a single LLM call and involve sequences of calls (whether to an LLM or a different utility). LangChain provides a standard interface for chains, lots of integrations with other tools, and end-to-end chains for common applications.
📚 Data Augmented Generation:
Data Augmented Generation involves specific types of chains that first interact with an external data source to fetch data for use in the generation step. Examples include summarization of long pieces of text and question/answering over specific data sources.
🤖 Agents:
Agents involve an LLM making decisions about which Actions to take, taking that Action, seeing an Observation, and repeating that until done. LangChain provides a standard interface for agents, a selection of agents to choose from, and examples of end-to-end agents.
🧠 Memory:
Memory refers to persisting state between calls of a chain/agent. LangChain provides a standard interface for memory, a collection of memory implementations, and examples of chains/agents that use memory.
🧐 Evaluation:
[BETA] Generative models are notoriously hard to evaluate with traditional metrics. One new way of evaluating them is using language models themselves to do the evaluation. LangChain provides some prompts/chains for assisting in this.
For more information on these concepts, please see our full documentation.
💁 Contributing
As an open-source project in a rapidly developing field, we are extremely open to contributions, whether it be in the form of a new feature, improved infrastructure, or better documentation.
For detailed information on how to contribute, see here.