mirror of
https://github.com/hwchase17/langchain.git
synced 2025-06-02 04:58:46 +00:00
117 lines
3.6 KiB
Python
117 lines
3.6 KiB
Python
from __future__ import annotations
|
|
|
|
from typing import (
|
|
Dict,
|
|
List,
|
|
Type,
|
|
Union,
|
|
)
|
|
|
|
import google.ai.generativelanguage as glm
|
|
from langchain_core.pydantic_v1 import BaseModel
|
|
from langchain_core.tools import BaseTool
|
|
from langchain_core.utils.json_schema import dereference_refs
|
|
|
|
FunctionCallType = Union[BaseTool, Type[BaseModel], Dict]
|
|
|
|
TYPE_ENUM = {
|
|
"string": glm.Type.STRING,
|
|
"number": glm.Type.NUMBER,
|
|
"integer": glm.Type.INTEGER,
|
|
"boolean": glm.Type.BOOLEAN,
|
|
"array": glm.Type.ARRAY,
|
|
"object": glm.Type.OBJECT,
|
|
}
|
|
|
|
|
|
def convert_to_genai_function_declarations(
|
|
function_calls: List[FunctionCallType],
|
|
) -> List[glm.Tool]:
|
|
return [
|
|
glm.Tool(
|
|
function_declarations=[_convert_to_genai_function(fc)],
|
|
)
|
|
for fc in function_calls
|
|
]
|
|
|
|
|
|
def _convert_to_genai_function(fc: FunctionCallType) -> glm.FunctionDeclaration:
|
|
if isinstance(fc, BaseTool):
|
|
return _convert_tool_to_genai_function(fc)
|
|
elif isinstance(fc, type) and issubclass(fc, BaseModel):
|
|
return _convert_pydantic_to_genai_function(fc)
|
|
elif isinstance(fc, dict):
|
|
return glm.FunctionDeclaration(
|
|
name=fc["name"],
|
|
description=fc.get("description"),
|
|
parameters={
|
|
"properties": {
|
|
k: {
|
|
"type_": TYPE_ENUM[v["type"]],
|
|
"description": v.get("description"),
|
|
}
|
|
for k, v in fc["parameters"]["properties"].items()
|
|
},
|
|
"required": fc["parameters"].get("required", []),
|
|
"type_": TYPE_ENUM[fc["parameters"]["type"]],
|
|
},
|
|
)
|
|
else:
|
|
raise ValueError(f"Unsupported function call type {fc}")
|
|
|
|
|
|
def _convert_tool_to_genai_function(tool: BaseTool) -> glm.FunctionDeclaration:
|
|
if tool.args_schema:
|
|
schema = dereference_refs(tool.args_schema.schema())
|
|
schema.pop("definitions", None)
|
|
|
|
return glm.FunctionDeclaration(
|
|
name=tool.name or schema["title"],
|
|
description=tool.description or schema["description"],
|
|
parameters={
|
|
"properties": {
|
|
k: {
|
|
"type_": TYPE_ENUM[v["type"]],
|
|
"description": v.get("description"),
|
|
}
|
|
for k, v in schema["properties"].items()
|
|
},
|
|
"required": schema["required"],
|
|
"type_": TYPE_ENUM[schema["type"]],
|
|
},
|
|
)
|
|
else:
|
|
return glm.FunctionDeclaration(
|
|
name=tool.name,
|
|
description=tool.description,
|
|
parameters={
|
|
"properties": {
|
|
"__arg1": {"type_": TYPE_ENUM["string"]},
|
|
},
|
|
"required": ["__arg1"],
|
|
"type_": TYPE_ENUM["object"],
|
|
},
|
|
)
|
|
|
|
|
|
def _convert_pydantic_to_genai_function(
|
|
pydantic_model: Type[BaseModel],
|
|
) -> glm.FunctionDeclaration:
|
|
schema = dereference_refs(pydantic_model.schema())
|
|
schema.pop("definitions", None)
|
|
return glm.FunctionDeclaration(
|
|
name=schema["title"],
|
|
description=schema.get("description", ""),
|
|
parameters={
|
|
"properties": {
|
|
k: {
|
|
"type_": TYPE_ENUM[v["type"]],
|
|
"description": v.get("description"),
|
|
}
|
|
for k, v in schema["properties"].items()
|
|
},
|
|
"required": schema["required"],
|
|
"type_": TYPE_ENUM[schema["type"]],
|
|
},
|
|
)
|