mirror of
https://github.com/hwchase17/langchain.git
synced 2025-09-12 21:11:43 +00:00
## Amazon Personalize support on Langchain This PR is a successor to this PR - https://github.com/langchain-ai/langchain/pull/13216 This PR introduces an integration with [Amazon Personalize](https://aws.amazon.com/personalize/) to help you to retrieve recommendations and use them in your natural language applications. This integration provides two new components: 1. An `AmazonPersonalize` client, that provides a wrapper around the Amazon Personalize API. 2. An `AmazonPersonalizeChain`, that provides a chain to pull in recommendations using the client, and then generating the response in natural language. We have added this to langchain_experimental since there was feedback from the previous PR about having this support in experimental rather than the core or community extensions. Here is some sample code to explain the usage. ```python from langchain_experimental.recommenders import AmazonPersonalize from langchain_experimental.recommenders import AmazonPersonalizeChain from langchain.llms.bedrock import Bedrock recommender_arn = "<insert_arn>" client=AmazonPersonalize( credentials_profile_name="default", region_name="us-west-2", recommender_arn=recommender_arn ) bedrock_llm = Bedrock( model_id="anthropic.claude-v2", region_name="us-west-2" ) chain = AmazonPersonalizeChain.from_llm( llm=bedrock_llm, client=client ) response = chain({'user_id': '1'}) ``` Reviewer: @3coins
🦜️🧪 LangChain Experimental
This package holds experimental LangChain code, intended for research and experimental uses.
Warning
Portions of the code in this package may be dangerous if not properly deployed in a sandboxed environment. Please be wary of deploying experimental code to production unless you've taken appropriate precautions and have already discussed it with your security team.
Some of the code here may be marked with security notices. However, given the exploratory and experimental nature of the code in this package, the lack of a security notice on a piece of code does not mean that the code in question does not require additional security considerations in order to be safe to use.