infrakit: Fix detection of running proceses

os.FindProcess() does not return an error when then process does not
exist. It even returns a dummy process object.

Use the go-ps package to find out if the hyperkit process is actually
running.

Signed-off-by: Rolf Neugebauer <rolf.neugebauer@docker.com>
This commit is contained in:
Rolf Neugebauer
2017-03-09 17:37:22 +00:00
parent 8da4d381fb
commit d6d2162999
40 changed files with 1899 additions and 9 deletions

View File

@@ -0,0 +1,20 @@
The MIT License (MIT)
Copyright (c) 2014 Armon Dadgar
Permission is hereby granted, free of charge, to any person obtaining a copy of
this software and associated documentation files (the "Software"), to deal in
the Software without restriction, including without limitation the rights to
use, copy, modify, merge, publish, distribute, sublicense, and/or sell copies of
the Software, and to permit persons to whom the Software is furnished to do so,
subject to the following conditions:
The above copyright notice and this permission notice shall be included in all
copies or substantial portions of the Software.
THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, FITNESS
FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR
COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER
IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN
CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.

View File

@@ -0,0 +1,38 @@
go-radix [![Build Status](https://travis-ci.org/armon/go-radix.png)](https://travis-ci.org/armon/go-radix)
=========
Provides the `radix` package that implements a [radix tree](http://en.wikipedia.org/wiki/Radix_tree).
The package only provides a single `Tree` implementation, optimized for sparse nodes.
As a radix tree, it provides the following:
* O(k) operations. In many cases, this can be faster than a hash table since
the hash function is an O(k) operation, and hash tables have very poor cache locality.
* Minimum / Maximum value lookups
* Ordered iteration
For an immutable variant, see [go-immutable-radix](https://github.com/hashicorp/go-immutable-radix).
Documentation
=============
The full documentation is available on [Godoc](http://godoc.org/github.com/armon/go-radix).
Example
=======
Below is a simple example of usage
```go
// Create a tree
r := radix.New()
r.Insert("foo", 1)
r.Insert("bar", 2)
r.Insert("foobar", 2)
// Find the longest prefix match
m, _, _ := r.LongestPrefix("foozip")
if m != "foo" {
panic("should be foo")
}
```

View File

@@ -0,0 +1,496 @@
package radix
import (
"sort"
"strings"
)
// WalkFn is used when walking the tree. Takes a
// key and value, returning if iteration should
// be terminated.
type WalkFn func(s string, v interface{}) bool
// leafNode is used to represent a value
type leafNode struct {
key string
val interface{}
}
// edge is used to represent an edge node
type edge struct {
label byte
node *node
}
type node struct {
// leaf is used to store possible leaf
leaf *leafNode
// prefix is the common prefix we ignore
prefix string
// Edges should be stored in-order for iteration.
// We avoid a fully materialized slice to save memory,
// since in most cases we expect to be sparse
edges edges
}
func (n *node) isLeaf() bool {
return n.leaf != nil
}
func (n *node) addEdge(e edge) {
n.edges = append(n.edges, e)
n.edges.Sort()
}
func (n *node) replaceEdge(e edge) {
num := len(n.edges)
idx := sort.Search(num, func(i int) bool {
return n.edges[i].label >= e.label
})
if idx < num && n.edges[idx].label == e.label {
n.edges[idx].node = e.node
return
}
panic("replacing missing edge")
}
func (n *node) getEdge(label byte) *node {
num := len(n.edges)
idx := sort.Search(num, func(i int) bool {
return n.edges[i].label >= label
})
if idx < num && n.edges[idx].label == label {
return n.edges[idx].node
}
return nil
}
func (n *node) delEdge(label byte) {
num := len(n.edges)
idx := sort.Search(num, func(i int) bool {
return n.edges[i].label >= label
})
if idx < num && n.edges[idx].label == label {
copy(n.edges[idx:], n.edges[idx+1:])
n.edges[len(n.edges)-1] = edge{}
n.edges = n.edges[:len(n.edges)-1]
}
}
type edges []edge
func (e edges) Len() int {
return len(e)
}
func (e edges) Less(i, j int) bool {
return e[i].label < e[j].label
}
func (e edges) Swap(i, j int) {
e[i], e[j] = e[j], e[i]
}
func (e edges) Sort() {
sort.Sort(e)
}
// Tree implements a radix tree. This can be treated as a
// Dictionary abstract data type. The main advantage over
// a standard hash map is prefix-based lookups and
// ordered iteration,
type Tree struct {
root *node
size int
}
// New returns an empty Tree
func New() *Tree {
return NewFromMap(nil)
}
// NewFromMap returns a new tree containing the keys
// from an existing map
func NewFromMap(m map[string]interface{}) *Tree {
t := &Tree{root: &node{}}
for k, v := range m {
t.Insert(k, v)
}
return t
}
// Len is used to return the number of elements in the tree
func (t *Tree) Len() int {
return t.size
}
// longestPrefix finds the length of the shared prefix
// of two strings
func longestPrefix(k1, k2 string) int {
max := len(k1)
if l := len(k2); l < max {
max = l
}
var i int
for i = 0; i < max; i++ {
if k1[i] != k2[i] {
break
}
}
return i
}
// Insert is used to add a newentry or update
// an existing entry. Returns if updated.
func (t *Tree) Insert(s string, v interface{}) (interface{}, bool) {
var parent *node
n := t.root
search := s
for {
// Handle key exhaution
if len(search) == 0 {
if n.isLeaf() {
old := n.leaf.val
n.leaf.val = v
return old, true
}
n.leaf = &leafNode{
key: s,
val: v,
}
t.size++
return nil, false
}
// Look for the edge
parent = n
n = n.getEdge(search[0])
// No edge, create one
if n == nil {
e := edge{
label: search[0],
node: &node{
leaf: &leafNode{
key: s,
val: v,
},
prefix: search,
},
}
parent.addEdge(e)
t.size++
return nil, false
}
// Determine longest prefix of the search key on match
commonPrefix := longestPrefix(search, n.prefix)
if commonPrefix == len(n.prefix) {
search = search[commonPrefix:]
continue
}
// Split the node
t.size++
child := &node{
prefix: search[:commonPrefix],
}
parent.replaceEdge(edge{
label: search[0],
node: child,
})
// Restore the existing node
child.addEdge(edge{
label: n.prefix[commonPrefix],
node: n,
})
n.prefix = n.prefix[commonPrefix:]
// Create a new leaf node
leaf := &leafNode{
key: s,
val: v,
}
// If the new key is a subset, add to to this node
search = search[commonPrefix:]
if len(search) == 0 {
child.leaf = leaf
return nil, false
}
// Create a new edge for the node
child.addEdge(edge{
label: search[0],
node: &node{
leaf: leaf,
prefix: search,
},
})
return nil, false
}
}
// Delete is used to delete a key, returning the previous
// value and if it was deleted
func (t *Tree) Delete(s string) (interface{}, bool) {
var parent *node
var label byte
n := t.root
search := s
for {
// Check for key exhaution
if len(search) == 0 {
if !n.isLeaf() {
break
}
goto DELETE
}
// Look for an edge
parent = n
label = search[0]
n = n.getEdge(label)
if n == nil {
break
}
// Consume the search prefix
if strings.HasPrefix(search, n.prefix) {
search = search[len(n.prefix):]
} else {
break
}
}
return nil, false
DELETE:
// Delete the leaf
leaf := n.leaf
n.leaf = nil
t.size--
// Check if we should delete this node from the parent
if parent != nil && len(n.edges) == 0 {
parent.delEdge(label)
}
// Check if we should merge this node
if n != t.root && len(n.edges) == 1 {
n.mergeChild()
}
// Check if we should merge the parent's other child
if parent != nil && parent != t.root && len(parent.edges) == 1 && !parent.isLeaf() {
parent.mergeChild()
}
return leaf.val, true
}
func (n *node) mergeChild() {
e := n.edges[0]
child := e.node
n.prefix = n.prefix + child.prefix
n.leaf = child.leaf
n.edges = child.edges
}
// Get is used to lookup a specific key, returning
// the value and if it was found
func (t *Tree) Get(s string) (interface{}, bool) {
n := t.root
search := s
for {
// Check for key exhaution
if len(search) == 0 {
if n.isLeaf() {
return n.leaf.val, true
}
break
}
// Look for an edge
n = n.getEdge(search[0])
if n == nil {
break
}
// Consume the search prefix
if strings.HasPrefix(search, n.prefix) {
search = search[len(n.prefix):]
} else {
break
}
}
return nil, false
}
// LongestPrefix is like Get, but instead of an
// exact match, it will return the longest prefix match.
func (t *Tree) LongestPrefix(s string) (string, interface{}, bool) {
var last *leafNode
n := t.root
search := s
for {
// Look for a leaf node
if n.isLeaf() {
last = n.leaf
}
// Check for key exhaution
if len(search) == 0 {
break
}
// Look for an edge
n = n.getEdge(search[0])
if n == nil {
break
}
// Consume the search prefix
if strings.HasPrefix(search, n.prefix) {
search = search[len(n.prefix):]
} else {
break
}
}
if last != nil {
return last.key, last.val, true
}
return "", nil, false
}
// Minimum is used to return the minimum value in the tree
func (t *Tree) Minimum() (string, interface{}, bool) {
n := t.root
for {
if n.isLeaf() {
return n.leaf.key, n.leaf.val, true
}
if len(n.edges) > 0 {
n = n.edges[0].node
} else {
break
}
}
return "", nil, false
}
// Maximum is used to return the maximum value in the tree
func (t *Tree) Maximum() (string, interface{}, bool) {
n := t.root
for {
if num := len(n.edges); num > 0 {
n = n.edges[num-1].node
continue
}
if n.isLeaf() {
return n.leaf.key, n.leaf.val, true
}
break
}
return "", nil, false
}
// Walk is used to walk the tree
func (t *Tree) Walk(fn WalkFn) {
recursiveWalk(t.root, fn)
}
// WalkPrefix is used to walk the tree under a prefix
func (t *Tree) WalkPrefix(prefix string, fn WalkFn) {
n := t.root
search := prefix
for {
// Check for key exhaution
if len(search) == 0 {
recursiveWalk(n, fn)
return
}
// Look for an edge
n = n.getEdge(search[0])
if n == nil {
break
}
// Consume the search prefix
if strings.HasPrefix(search, n.prefix) {
search = search[len(n.prefix):]
} else if strings.HasPrefix(n.prefix, search) {
// Child may be under our search prefix
recursiveWalk(n, fn)
return
} else {
break
}
}
}
// WalkPath is used to walk the tree, but only visiting nodes
// from the root down to a given leaf. Where WalkPrefix walks
// all the entries *under* the given prefix, this walks the
// entries *above* the given prefix.
func (t *Tree) WalkPath(path string, fn WalkFn) {
n := t.root
search := path
for {
// Visit the leaf values if any
if n.leaf != nil && fn(n.leaf.key, n.leaf.val) {
return
}
// Check for key exhaution
if len(search) == 0 {
return
}
// Look for an edge
n = n.getEdge(search[0])
if n == nil {
return
}
// Consume the search prefix
if strings.HasPrefix(search, n.prefix) {
search = search[len(n.prefix):]
} else {
break
}
}
}
// recursiveWalk is used to do a pre-order walk of a node
// recursively. Returns true if the walk should be aborted
func recursiveWalk(n *node, fn WalkFn) bool {
// Visit the leaf values if any
if n.leaf != nil && fn(n.leaf.key, n.leaf.val) {
return true
}
// Recurse on the children
for _, e := range n.edges {
if recursiveWalk(e.node, fn) {
return true
}
}
return false
}
// ToMap is used to walk the tree and convert it into a map
func (t *Tree) ToMap() map[string]interface{} {
out := make(map[string]interface{}, t.size)
t.Walk(func(k string, v interface{}) bool {
out[k] = v
return false
})
return out
}

View File

@@ -0,0 +1,21 @@
The MIT License (MIT)
Copyright (c) 2014 Mitchell Hashimoto
Permission is hereby granted, free of charge, to any person obtaining a copy
of this software and associated documentation files (the "Software"), to deal
in the Software without restriction, including without limitation the rights
to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
copies of the Software, and to permit persons to whom the Software is
furnished to do so, subject to the following conditions:
The above copyright notice and this permission notice shall be included in
all copies or substantial portions of the Software.
THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
THE SOFTWARE.

View File

@@ -0,0 +1,34 @@
# Process List Library for Go
go-ps is a library for Go that implements OS-specific APIs to list and
manipulate processes in a platform-safe way. The library can find and
list processes on Linux, Mac OS X, Solaris, and Windows.
If you're new to Go, this library has a good amount of advanced Go educational
value as well. It uses some advanced features of Go: build tags, accessing
DLL methods for Windows, cgo for Darwin, etc.
How it works:
* **Darwin** uses the `sysctl` syscall to retrieve the process table.
* **Unix** uses the procfs at `/proc` to inspect the process tree.
* **Windows** uses the Windows API, and methods such as
`CreateToolhelp32Snapshot` to get a point-in-time snapshot of
the process table.
## Installation
Install using standard `go get`:
```
$ go get github.com/mitchellh/go-ps
...
```
## TODO
Want to contribute? Here is a short TODO list of things that aren't
implemented for this library that would be nice:
* FreeBSD support
* Plan9 support

View File

@@ -0,0 +1,40 @@
// ps provides an API for finding and listing processes in a platform-agnostic
// way.
//
// NOTE: If you're reading these docs online via GoDocs or some other system,
// you might only see the Unix docs. This project makes heavy use of
// platform-specific implementations. We recommend reading the source if you
// are interested.
package ps
// Process is the generic interface that is implemented on every platform
// and provides common operations for processes.
type Process interface {
// Pid is the process ID for this process.
Pid() int
// PPid is the parent process ID for this process.
PPid() int
// Executable name running this process. This is not a path to the
// executable.
Executable() string
}
// Processes returns all processes.
//
// This of course will be a point-in-time snapshot of when this method was
// called. Some operating systems don't provide snapshot capability of the
// process table, in which case the process table returned might contain
// ephemeral entities that happened to be running when this was called.
func Processes() ([]Process, error) {
return processes()
}
// FindProcess looks up a single process by pid.
//
// Process will be nil and error will be nil if a matching process is
// not found.
func FindProcess(pid int) (Process, error) {
return findProcess(pid)
}

View File

@@ -0,0 +1,138 @@
// +build darwin
package ps
import (
"bytes"
"encoding/binary"
"syscall"
"unsafe"
)
type DarwinProcess struct {
pid int
ppid int
binary string
}
func (p *DarwinProcess) Pid() int {
return p.pid
}
func (p *DarwinProcess) PPid() int {
return p.ppid
}
func (p *DarwinProcess) Executable() string {
return p.binary
}
func findProcess(pid int) (Process, error) {
ps, err := processes()
if err != nil {
return nil, err
}
for _, p := range ps {
if p.Pid() == pid {
return p, nil
}
}
return nil, nil
}
func processes() ([]Process, error) {
buf, err := darwinSyscall()
if err != nil {
return nil, err
}
procs := make([]*kinfoProc, 0, 50)
k := 0
for i := _KINFO_STRUCT_SIZE; i < buf.Len(); i += _KINFO_STRUCT_SIZE {
proc := &kinfoProc{}
err = binary.Read(bytes.NewBuffer(buf.Bytes()[k:i]), binary.LittleEndian, proc)
if err != nil {
return nil, err
}
k = i
procs = append(procs, proc)
}
darwinProcs := make([]Process, len(procs))
for i, p := range procs {
darwinProcs[i] = &DarwinProcess{
pid: int(p.Pid),
ppid: int(p.PPid),
binary: darwinCstring(p.Comm),
}
}
return darwinProcs, nil
}
func darwinCstring(s [16]byte) string {
i := 0
for _, b := range s {
if b != 0 {
i++
} else {
break
}
}
return string(s[:i])
}
func darwinSyscall() (*bytes.Buffer, error) {
mib := [4]int32{_CTRL_KERN, _KERN_PROC, _KERN_PROC_ALL, 0}
size := uintptr(0)
_, _, errno := syscall.Syscall6(
syscall.SYS___SYSCTL,
uintptr(unsafe.Pointer(&mib[0])),
4,
0,
uintptr(unsafe.Pointer(&size)),
0,
0)
if errno != 0 {
return nil, errno
}
bs := make([]byte, size)
_, _, errno = syscall.Syscall6(
syscall.SYS___SYSCTL,
uintptr(unsafe.Pointer(&mib[0])),
4,
uintptr(unsafe.Pointer(&bs[0])),
uintptr(unsafe.Pointer(&size)),
0,
0)
if errno != 0 {
return nil, errno
}
return bytes.NewBuffer(bs[0:size]), nil
}
const (
_CTRL_KERN = 1
_KERN_PROC = 14
_KERN_PROC_ALL = 0
_KINFO_STRUCT_SIZE = 648
)
type kinfoProc struct {
_ [40]byte
Pid int32
_ [199]byte
Comm [16]byte
_ [301]byte
PPid int32
_ [84]byte
}

View File

@@ -0,0 +1,260 @@
// +build freebsd,amd64
package ps
import (
"bytes"
"encoding/binary"
"syscall"
"unsafe"
)
// copied from sys/sysctl.h
const (
CTL_KERN = 1 // "high kernel": proc, limits
KERN_PROC = 14 // struct: process entries
KERN_PROC_PID = 1 // by process id
KERN_PROC_PROC = 8 // only return procs
KERN_PROC_PATHNAME = 12 // path to executable
)
// copied from sys/user.h
type Kinfo_proc struct {
Ki_structsize int32
Ki_layout int32
Ki_args int64
Ki_paddr int64
Ki_addr int64
Ki_tracep int64
Ki_textvp int64
Ki_fd int64
Ki_vmspace int64
Ki_wchan int64
Ki_pid int32
Ki_ppid int32
Ki_pgid int32
Ki_tpgid int32
Ki_sid int32
Ki_tsid int32
Ki_jobc [2]byte
Ki_spare_short1 [2]byte
Ki_tdev int32
Ki_siglist [16]byte
Ki_sigmask [16]byte
Ki_sigignore [16]byte
Ki_sigcatch [16]byte
Ki_uid int32
Ki_ruid int32
Ki_svuid int32
Ki_rgid int32
Ki_svgid int32
Ki_ngroups [2]byte
Ki_spare_short2 [2]byte
Ki_groups [64]byte
Ki_size int64
Ki_rssize int64
Ki_swrss int64
Ki_tsize int64
Ki_dsize int64
Ki_ssize int64
Ki_xstat [2]byte
Ki_acflag [2]byte
Ki_pctcpu int32
Ki_estcpu int32
Ki_slptime int32
Ki_swtime int32
Ki_cow int32
Ki_runtime int64
Ki_start [16]byte
Ki_childtime [16]byte
Ki_flag int64
Ki_kiflag int64
Ki_traceflag int32
Ki_stat [1]byte
Ki_nice [1]byte
Ki_lock [1]byte
Ki_rqindex [1]byte
Ki_oncpu [1]byte
Ki_lastcpu [1]byte
Ki_ocomm [17]byte
Ki_wmesg [9]byte
Ki_login [18]byte
Ki_lockname [9]byte
Ki_comm [20]byte
Ki_emul [17]byte
Ki_sparestrings [68]byte
Ki_spareints [36]byte
Ki_cr_flags int32
Ki_jid int32
Ki_numthreads int32
Ki_tid int32
Ki_pri int32
Ki_rusage [144]byte
Ki_rusage_ch [144]byte
Ki_pcb int64
Ki_kstack int64
Ki_udata int64
Ki_tdaddr int64
Ki_spareptrs [48]byte
Ki_spareint64s [96]byte
Ki_sflag int64
Ki_tdflags int64
}
// UnixProcess is an implementation of Process that contains Unix-specific
// fields and information.
type UnixProcess struct {
pid int
ppid int
state rune
pgrp int
sid int
binary string
}
func (p *UnixProcess) Pid() int {
return p.pid
}
func (p *UnixProcess) PPid() int {
return p.ppid
}
func (p *UnixProcess) Executable() string {
return p.binary
}
// Refresh reloads all the data associated with this process.
func (p *UnixProcess) Refresh() error {
mib := []int32{CTL_KERN, KERN_PROC, KERN_PROC_PID, int32(p.pid)}
buf, length, err := call_syscall(mib)
if err != nil {
return err
}
proc_k := Kinfo_proc{}
if length != uint64(unsafe.Sizeof(proc_k)) {
return err
}
k, err := parse_kinfo_proc(buf)
if err != nil {
return err
}
p.ppid, p.pgrp, p.sid, p.binary = copy_params(&k)
return nil
}
func copy_params(k *Kinfo_proc) (int, int, int, string) {
n := -1
for i, b := range k.Ki_comm {
if b == 0 {
break
}
n = i + 1
}
comm := string(k.Ki_comm[:n])
return int(k.Ki_ppid), int(k.Ki_pgid), int(k.Ki_sid), comm
}
func findProcess(pid int) (Process, error) {
mib := []int32{CTL_KERN, KERN_PROC, KERN_PROC_PATHNAME, int32(pid)}
_, _, err := call_syscall(mib)
if err != nil {
return nil, err
}
return newUnixProcess(pid)
}
func processes() ([]Process, error) {
results := make([]Process, 0, 50)
mib := []int32{CTL_KERN, KERN_PROC, KERN_PROC_PROC, 0}
buf, length, err := call_syscall(mib)
if err != nil {
return results, err
}
// get kinfo_proc size
k := Kinfo_proc{}
procinfo_len := int(unsafe.Sizeof(k))
count := int(length / uint64(procinfo_len))
// parse buf to procs
for i := 0; i < count; i++ {
b := buf[i*procinfo_len : i*procinfo_len+procinfo_len]
k, err := parse_kinfo_proc(b)
if err != nil {
continue
}
p, err := newUnixProcess(int(k.Ki_pid))
if err != nil {
continue
}
p.ppid, p.pgrp, p.sid, p.binary = copy_params(&k)
results = append(results, p)
}
return results, nil
}
func parse_kinfo_proc(buf []byte) (Kinfo_proc, error) {
var k Kinfo_proc
br := bytes.NewReader(buf)
err := binary.Read(br, binary.LittleEndian, &k)
if err != nil {
return k, err
}
return k, nil
}
func call_syscall(mib []int32) ([]byte, uint64, error) {
miblen := uint64(len(mib))
// get required buffer size
length := uint64(0)
_, _, err := syscall.RawSyscall6(
syscall.SYS___SYSCTL,
uintptr(unsafe.Pointer(&mib[0])),
uintptr(miblen),
0,
uintptr(unsafe.Pointer(&length)),
0,
0)
if err != 0 {
b := make([]byte, 0)
return b, length, err
}
if length == 0 {
b := make([]byte, 0)
return b, length, err
}
// get proc info itself
buf := make([]byte, length)
_, _, err = syscall.RawSyscall6(
syscall.SYS___SYSCTL,
uintptr(unsafe.Pointer(&mib[0])),
uintptr(miblen),
uintptr(unsafe.Pointer(&buf[0])),
uintptr(unsafe.Pointer(&length)),
0,
0)
if err != 0 {
return buf, length, err
}
return buf, length, nil
}
func newUnixProcess(pid int) (*UnixProcess, error) {
p := &UnixProcess{pid: pid}
return p, p.Refresh()
}

View File

@@ -0,0 +1,35 @@
// +build linux
package ps
import (
"fmt"
"io/ioutil"
"strings"
)
// Refresh reloads all the data associated with this process.
func (p *UnixProcess) Refresh() error {
statPath := fmt.Sprintf("/proc/%d/stat", p.pid)
dataBytes, err := ioutil.ReadFile(statPath)
if err != nil {
return err
}
// First, parse out the image name
data := string(dataBytes)
binStart := strings.IndexRune(data, '(') + 1
binEnd := strings.IndexRune(data[binStart:], ')')
p.binary = data[binStart : binStart+binEnd]
// Move past the image name and start parsing the rest
data = data[binStart+binEnd+2:]
_, err = fmt.Sscanf(data,
"%c %d %d %d",
&p.state,
&p.ppid,
&p.pgrp,
&p.sid)
return err
}

View File

@@ -0,0 +1,96 @@
// +build solaris
package ps
import (
"encoding/binary"
"fmt"
"os"
)
type ushort_t uint16
type id_t int32
type pid_t int32
type uid_t int32
type gid_t int32
type dev_t uint64
type size_t uint64
type uintptr_t uint64
type timestruc_t [16]byte
// This is copy from /usr/include/sys/procfs.h
type psinfo_t struct {
Pr_flag int32 /* process flags (DEPRECATED; do not use) */
Pr_nlwp int32 /* number of active lwps in the process */
Pr_pid pid_t /* unique process id */
Pr_ppid pid_t /* process id of parent */
Pr_pgid pid_t /* pid of process group leader */
Pr_sid pid_t /* session id */
Pr_uid uid_t /* real user id */
Pr_euid uid_t /* effective user id */
Pr_gid gid_t /* real group id */
Pr_egid gid_t /* effective group id */
Pr_addr uintptr_t /* address of process */
Pr_size size_t /* size of process image in Kbytes */
Pr_rssize size_t /* resident set size in Kbytes */
Pr_pad1 size_t
Pr_ttydev dev_t /* controlling tty device (or PRNODEV) */
// Guess this following 2 ushort_t values require a padding to properly
// align to the 64bit mark.
Pr_pctcpu ushort_t /* % of recent cpu time used by all lwps */
Pr_pctmem ushort_t /* % of system memory used by process */
Pr_pad64bit [4]byte
Pr_start timestruc_t /* process start time, from the epoch */
Pr_time timestruc_t /* usr+sys cpu time for this process */
Pr_ctime timestruc_t /* usr+sys cpu time for reaped children */
Pr_fname [16]byte /* name of execed file */
Pr_psargs [80]byte /* initial characters of arg list */
Pr_wstat int32 /* if zombie, the wait() status */
Pr_argc int32 /* initial argument count */
Pr_argv uintptr_t /* address of initial argument vector */
Pr_envp uintptr_t /* address of initial environment vector */
Pr_dmodel [1]byte /* data model of the process */
Pr_pad2 [3]byte
Pr_taskid id_t /* task id */
Pr_projid id_t /* project id */
Pr_nzomb int32 /* number of zombie lwps in the process */
Pr_poolid id_t /* pool id */
Pr_zoneid id_t /* zone id */
Pr_contract id_t /* process contract */
Pr_filler int32 /* reserved for future use */
Pr_lwp [128]byte /* information for representative lwp */
}
func (p *UnixProcess) Refresh() error {
var psinfo psinfo_t
path := fmt.Sprintf("/proc/%d/psinfo", p.pid)
fh, err := os.Open(path)
if err != nil {
return err
}
defer fh.Close()
err = binary.Read(fh, binary.LittleEndian, &psinfo)
if err != nil {
return err
}
p.ppid = int(psinfo.Pr_ppid)
p.binary = toString(psinfo.Pr_fname[:], 16)
return nil
}
func toString(array []byte, len int) string {
for i := 0; i < len; i++ {
if array[i] == 0 {
return string(array[:i])
}
}
return string(array[:])
}

View File

@@ -0,0 +1,101 @@
// +build linux solaris
package ps
import (
"fmt"
"io"
"os"
"strconv"
)
// UnixProcess is an implementation of Process that contains Unix-specific
// fields and information.
type UnixProcess struct {
pid int
ppid int
state rune
pgrp int
sid int
binary string
}
func (p *UnixProcess) Pid() int {
return p.pid
}
func (p *UnixProcess) PPid() int {
return p.ppid
}
func (p *UnixProcess) Executable() string {
return p.binary
}
func findProcess(pid int) (Process, error) {
dir := fmt.Sprintf("/proc/%d", pid)
_, err := os.Stat(dir)
if err != nil {
if os.IsNotExist(err) {
return nil, nil
}
return nil, err
}
return newUnixProcess(pid)
}
func processes() ([]Process, error) {
d, err := os.Open("/proc")
if err != nil {
return nil, err
}
defer d.Close()
results := make([]Process, 0, 50)
for {
fis, err := d.Readdir(10)
if err == io.EOF {
break
}
if err != nil {
return nil, err
}
for _, fi := range fis {
// We only care about directories, since all pids are dirs
if !fi.IsDir() {
continue
}
// We only care if the name starts with a numeric
name := fi.Name()
if name[0] < '0' || name[0] > '9' {
continue
}
// From this point forward, any errors we just ignore, because
// it might simply be that the process doesn't exist anymore.
pid, err := strconv.ParseInt(name, 10, 0)
if err != nil {
continue
}
p, err := newUnixProcess(int(pid))
if err != nil {
continue
}
results = append(results, p)
}
}
return results, nil
}
func newUnixProcess(pid int) (*UnixProcess, error) {
p := &UnixProcess{pid: pid}
return p, p.Refresh()
}

View File

@@ -0,0 +1,119 @@
// +build windows
package ps
import (
"fmt"
"syscall"
"unsafe"
)
// Windows API functions
var (
modKernel32 = syscall.NewLazyDLL("kernel32.dll")
procCloseHandle = modKernel32.NewProc("CloseHandle")
procCreateToolhelp32Snapshot = modKernel32.NewProc("CreateToolhelp32Snapshot")
procProcess32First = modKernel32.NewProc("Process32FirstW")
procProcess32Next = modKernel32.NewProc("Process32NextW")
)
// Some constants from the Windows API
const (
ERROR_NO_MORE_FILES = 0x12
MAX_PATH = 260
)
// PROCESSENTRY32 is the Windows API structure that contains a process's
// information.
type PROCESSENTRY32 struct {
Size uint32
CntUsage uint32
ProcessID uint32
DefaultHeapID uintptr
ModuleID uint32
CntThreads uint32
ParentProcessID uint32
PriorityClassBase int32
Flags uint32
ExeFile [MAX_PATH]uint16
}
// WindowsProcess is an implementation of Process for Windows.
type WindowsProcess struct {
pid int
ppid int
exe string
}
func (p *WindowsProcess) Pid() int {
return p.pid
}
func (p *WindowsProcess) PPid() int {
return p.ppid
}
func (p *WindowsProcess) Executable() string {
return p.exe
}
func newWindowsProcess(e *PROCESSENTRY32) *WindowsProcess {
// Find when the string ends for decoding
end := 0
for {
if e.ExeFile[end] == 0 {
break
}
end++
}
return &WindowsProcess{
pid: int(e.ProcessID),
ppid: int(e.ParentProcessID),
exe: syscall.UTF16ToString(e.ExeFile[:end]),
}
}
func findProcess(pid int) (Process, error) {
ps, err := processes()
if err != nil {
return nil, err
}
for _, p := range ps {
if p.Pid() == pid {
return p, nil
}
}
return nil, nil
}
func processes() ([]Process, error) {
handle, _, _ := procCreateToolhelp32Snapshot.Call(
0x00000002,
0)
if handle < 0 {
return nil, syscall.GetLastError()
}
defer procCloseHandle.Call(handle)
var entry PROCESSENTRY32
entry.Size = uint32(unsafe.Sizeof(entry))
ret, _, _ := procProcess32First.Call(handle, uintptr(unsafe.Pointer(&entry)))
if ret == 0 {
return nil, fmt.Errorf("Error retrieving process info.")
}
results := make([]Process, 0, 50)
for {
results = append(results, newWindowsProcess(&entry))
ret, _, _ := procProcess32Next.Call(handle, uintptr(unsafe.Pointer(&entry)))
if ret == 0 {
break
}
}
return results, nil
}