This commit is contained in:
Somashekar B R 2024-11-17 19:41:41 +00:00 committed by GitHub
commit 078778c6af
No known key found for this signature in database
GPG Key ID: B5690EEEBB952194
11 changed files with 305 additions and 74 deletions

54
Dockerfile.fireworks Normal file
View File

@ -0,0 +1,54 @@
FROM python:3.11.6-slim-bookworm as base
# Install poetry
RUN pip install pipx
RUN python3 -m pipx ensurepath
RUN pipx install poetry==1.8.3
ENV PATH="/root/.local/bin:$PATH"
ENV PATH=".venv/bin/:$PATH"
RUN apt update && apt install -y \
build-essential
# https://python-poetry.org/docs/configuration/#virtualenvsin-project
ENV POETRY_VIRTUALENVS_IN_PROJECT=true
FROM base as dependencies
WORKDIR /home/worker/app
COPY pyproject.toml poetry.lock ./
ARG POETRY_EXTRAS="ui llms-fireworks embeddings-fireworks vector-stores-qdrant embeddings-openai"
RUN poetry install --no-root --extras "${POETRY_EXTRAS}"
FROM base as app
ENV PYTHONUNBUFFERED=1
ENV PORT=8080
ENV APP_ENV=prod
ENV PYTHONPATH="$PYTHONPATH:/home/worker/app/private_gpt/"
EXPOSE 8080
# Prepare a non-root user
# More info about how to configure UIDs and GIDs in Docker:
# https://github.com/systemd/systemd/blob/main/docs/UIDS-GIDS.md
# Define the User ID (UID) for the non-root user
# UID 100 is chosen to avoid conflicts with existing system users
ARG UID=100
# Define the Group ID (GID) for the non-root user
# GID 65534 is often used for the 'nogroup' or 'nobody' group
ARG GID=65534
RUN adduser --system --gid ${GID} --uid ${UID} --home /home/worker worker
WORKDIR /home/worker/app
RUN chown worker /home/worker/app
RUN mkdir local_data && chown worker local_data
RUN mkdir models && chown worker models
COPY --chown=worker --from=dependencies /home/worker/app/.venv/ .venv
COPY --chown=worker private_gpt/ private_gpt
COPY --chown=worker *.yaml .
COPY --chown=worker scripts/ scripts
USER worker
ENTRYPOINT python -m private_gpt

View File

@ -1,5 +1,4 @@
services:
#-----------------------------------
#---- Private-GPT services ---------
#-----------------------------------
@ -7,7 +6,7 @@ services:
# Private-GPT service for the Ollama CPU and GPU modes
# This service builds from an external Dockerfile and runs the Ollama mode.
private-gpt-ollama:
image: ${PGPT_IMAGE:-zylonai/private-gpt}:${PGPT_TAG:-0.6.2}-ollama # x-release-please-version
image: ${PGPT_IMAGE:-zylonai/private-gpt}:${PGPT_TAG:-0.6.2}-ollama # x-release-please-version
user: root
build:
context: .
@ -93,7 +92,7 @@ services:
ports:
- "11434:11434"
volumes:
- ./models:/root/.ollama
- ./local_data:/root/.ollama
profiles:
- ""
- ollama-cpu
@ -114,3 +113,21 @@ services:
capabilities: [gpu]
profiles:
- ollama-cuda
# fireworks service
private-gpt-fireworks:
build:
context: .
dockerfile: Dockerfile.fireworks
volumes:
- ./local_data/:/home/worker/app/local_data
ports:
- "3001:8080"
environment:
PORT: 8080
PGPT_PROFILES: fireworks
FIREWORKS_API_KEY: ${FIREWORKS_API_KEY}
env_file:
- .env
profiles:
- fireworks

View File

@ -3,45 +3,63 @@ It is important that you review the [Main Concepts](../concepts) section to unde
## Base requirements to run PrivateGPT
### 1. Clone the PrivateGPT Repository
Clone the repository and navigate to it:
```bash
git clone https://github.com/zylon-ai/private-gpt
cd private-gpt
```
### 2. Install Python 3.11
If you do not have Python 3.11 installed, install it using a Python version manager like `pyenv`. Earlier Python versions are not supported.
#### macOS/Linux
Install and set Python 3.11 using [pyenv](https://github.com/pyenv/pyenv):
```bash
pyenv install 3.11
pyenv local 3.11
```
#### Windows
Install and set Python 3.11 using [pyenv-win](https://github.com/pyenv-win/pyenv-win):
```bash
pyenv install 3.11
pyenv local 3.11
```
### 3. Install `Poetry`
Install [Poetry](https://python-poetry.org/docs/#installing-with-the-official-installer) for dependency management:
Follow the instructions on the official Poetry website to install it.
<Callout intent="warning">
A bug exists in Poetry versions 1.7.0 and earlier. We strongly recommend upgrading to a tested version.
To upgrade Poetry to latest tested version, run `poetry self update 1.8.3` after installing it.
A bug exists in Poetry versions 1.7.0 and earlier. We strongly recommend
upgrading to a tested version. To upgrade Poetry to latest tested version, run
`poetry self update 1.8.3` after installing it.
</Callout>
### 4. Optional: Install `make`
To run various scripts, you need to install `make`. Follow the instructions for your operating system:
#### macOS
(Using Homebrew):
```bash
brew install make
```
#### Windows
(Using Chocolatey):
```bash
choco install make
```
@ -53,6 +71,7 @@ PrivateGPT allows customization of the setup, from fully local to cloud-based, b
```bash
poetry install --extras "<extra1> <extra2>..."
```
Where `<extra>` can be any of the following options described below.
### Available Modules
@ -61,46 +80,49 @@ You need to choose one option per category (LLM, Embeddings, Vector Stores, UI).
#### LLM
| **Option** | **Description** | **Extra** |
|--------------|------------------------------------------------------------------------|---------------------|
| **ollama** | Adds support for Ollama LLM, requires Ollama running locally | llms-ollama |
| llama-cpp | Adds support for local LLM using LlamaCPP | llms-llama-cpp |
| sagemaker | Adds support for Amazon Sagemaker LLM, requires Sagemaker endpoints | llms-sagemaker |
| openai | Adds support for OpenAI LLM, requires OpenAI API key | llms-openai |
| openailike | Adds support for 3rd party LLM providers compatible with OpenAI's API | llms-openai-like |
| azopenai | Adds support for Azure OpenAI LLM, requires Azure endpoints | llms-azopenai |
| gemini | Adds support for Gemini LLM, requires Gemini API key | llms-gemini |
| **Option** | **Description** | **Extra** |
| ---------- | --------------------------------------------------------------------- | ---------------- |
| **ollama** | Adds support for Ollama LLM, requires Ollama running locally | llms-ollama |
| llama-cpp | Adds support for local LLM using LlamaCPP | llms-llama-cpp |
| sagemaker | Adds support for Amazon Sagemaker LLM, requires Sagemaker endpoints | llms-sagemaker |
| openai | Adds support for OpenAI LLM, requires OpenAI API key | llms-openai |
| openailike | Adds support for 3rd party LLM providers compatible with OpenAI's API | llms-openai-like |
| azopenai | Adds support for Azure OpenAI LLM, requires Azure endpoints | llms-azopenai |
| gemini | Adds support for Gemini LLM, requires Gemini API key | llms-gemini |
#### Embeddings
| **Option** | **Description** | **Extra** |
|------------------|--------------------------------------------------------------------------------|-------------------------|
| **ollama** | Adds support for Ollama Embeddings, requires Ollama running locally | embeddings-ollama |
| huggingface | Adds support for local Embeddings using HuggingFace | embeddings-huggingface |
| openai | Adds support for OpenAI Embeddings, requires OpenAI API key | embeddings-openai |
| sagemaker | Adds support for Amazon Sagemaker Embeddings, requires Sagemaker endpoints | embeddings-sagemaker |
| azopenai | Adds support for Azure OpenAI Embeddings, requires Azure endpoints | embeddings-azopenai |
| gemini | Adds support for Gemini Embeddings, requires Gemini API key | embeddings-gemini |
| **Option** | **Description** | **Extra** |
| ----------- | -------------------------------------------------------------------------- | ---------------------- |
| **ollama** | Adds support for Ollama Embeddings, requires Ollama running locally | embeddings-ollama |
| huggingface | Adds support for local Embeddings using HuggingFace | embeddings-huggingface |
| openai | Adds support for OpenAI Embeddings, requires OpenAI API key | embeddings-openai |
| sagemaker | Adds support for Amazon Sagemaker Embeddings, requires Sagemaker endpoints | embeddings-sagemaker |
| azopenai | Adds support for Azure OpenAI Embeddings, requires Azure endpoints | embeddings-azopenai |
| gemini | Adds support for Gemini Embeddings, requires Gemini API key | embeddings-gemini |
#### Vector Stores
| **Option** | **Description** | **Extra** |
|------------------|-----------------------------------------|-------------------------|
| **qdrant** | Adds support for Qdrant vector store | vector-stores-qdrant |
| milvus | Adds support for Milvus vector store | vector-stores-milvus |
| chroma | Adds support for Chroma DB vector store | vector-stores-chroma |
| postgres | Adds support for Postgres vector store | vector-stores-postgres |
| clickhouse | Adds support for Clickhouse vector store| vector-stores-clickhouse|
| **Option** | **Description** | **Extra** |
| ---------- | ---------------------------------------- | ------------------------ |
| **qdrant** | Adds support for Qdrant vector store | vector-stores-qdrant |
| milvus | Adds support for Milvus vector store | vector-stores-milvus |
| chroma | Adds support for Chroma DB vector store | vector-stores-chroma |
| postgres | Adds support for Postgres vector store | vector-stores-postgres |
| clickhouse | Adds support for Clickhouse vector store | vector-stores-clickhouse |
#### UI
| **Option** | **Description** | **Extra** |
|--------------|------------------------------------------|-----------|
| Gradio | Adds support for UI using Gradio | ui |
| **Option** | **Description** | **Extra** |
| ---------- | -------------------------------- | --------- |
| Gradio | Adds support for UI using Gradio | ui |
<Callout intent = "warning">
A working **Gradio UI client** is provided to test the API, together with a set of useful tools such as bulk
model download script, ingestion script, documents folder watch, etc. Please refer to the [UI alternatives](/manual/user-interface/alternatives) page for more UI alternatives.
<Callout intent="warning">
A working **Gradio UI client** is provided to test the API, together with a
set of useful tools such as bulk model download script, ingestion script,
documents folder watch, etc. Please refer to the [UI
alternatives](/manual/user-interface/alternatives) page for more UI
alternatives.
</Callout>
## Recommended Setups
@ -109,7 +131,7 @@ There are just some examples of recommended setups. You can mix and match the di
You'll find more information in the Manual section of the documentation.
> **Important for Windows**: In the examples below or how to run PrivateGPT with `make run`, `PGPT_PROFILES` env var is being set inline following Unix command line syntax (works on MacOS and Linux).
If you are using Windows, you'll need to set the env var in a different way, for example:
> If you are using Windows, you'll need to set the env var in a different way, for example:
```powershell
# Powershell
@ -136,6 +158,7 @@ Go to [ollama.ai](https://ollama.ai/) and follow the instructions to install Oll
After the installation, make sure the Ollama desktop app is closed.
Now, start Ollama service (it will start a local inference server, serving both the LLM and the Embeddings):
```bash
ollama serve
```
@ -152,6 +175,7 @@ ollama pull nomic-embed-text
```
Once done, on a different terminal, you can install PrivateGPT with the following command:
```bash
poetry install --extras "ui llms-ollama embeddings-ollama vector-stores-qdrant"
```
@ -175,6 +199,7 @@ You need to have access to sagemaker inference endpoints for the LLM and / or th
Edit the `settings-sagemaker.yaml` file to include the correct Sagemaker endpoints.
Then, install PrivateGPT with the following command:
```bash
poetry install --extras "ui llms-sagemaker embeddings-sagemaker vector-stores-qdrant"
```
@ -198,6 +223,7 @@ You need an OPENAI API key to run this setup.
Edit the `settings-openai.yaml` file to include the correct API KEY. Never commit it! It's a secret! As an alternative to editing `settings-openai.yaml`, you can just set the env var OPENAI_API_KEY.
Then, install PrivateGPT with the following command:
```bash
poetry install --extras "ui llms-openai embeddings-openai vector-stores-qdrant"
```
@ -221,6 +247,7 @@ You need to have access to Azure OpenAI inference endpoints for the LLM and / or
Edit the `settings-azopenai.yaml` file to include the correct Azure OpenAI endpoints.
Then, install PrivateGPT with the following command:
```bash
poetry install --extras "ui llms-azopenai embeddings-azopenai vector-stores-qdrant"
```
@ -235,6 +262,30 @@ PrivateGPT will use the already existing `settings-azopenai.yaml` settings file,
The UI will be available at http://localhost:8001
### Non-Private, FIREWORKS-powered test setup
If you want to test PrivateGPT with FIREWORKS's LLM and Embeddings -taking into account your data is going to FIREWORKS!- you can run the following command:
You need an FIREWORKS API key to run this setup.
Edit the `settings-fireworks.yaml` file to include the correct API KEY. Never commit it! It's a secret! As an alternative to editing `settings-fireworks.yaml`, you can just set the env var FIREWORKS_API_KEY.
Then, install PrivateGPT with the following command:
```bash
poetry install --extras "ui llms-fireworks embeddings-fireworks vector-stores-qdrant embeddings-openai"
```
Once installed, you can run PrivateGPT.
```bash
PGPT_PROFILES=fireworks make run
```
PrivateGPT will use the already existing `settings-fireworks.yaml` settings file, which is already configured to use FIREWORKS LLM and Embeddings endpoints, and Qdrant.
The UI will be available at http://localhost:8001
### Local, Llama-CPP powered setup
If you want to run PrivateGPT fully locally without relying on Ollama, you can run the following command:
@ -244,6 +295,7 @@ poetry install --extras "ui llms-llama-cpp embeddings-huggingface vector-stores-
```
In order for local LLM and embeddings to work, you need to download the models to the `models` folder. You can do so by running the `setup` script:
```bash
poetry run python scripts/setup
```
@ -277,6 +329,7 @@ To do that, you need to install `llama.cpp` python's binding `llama-cpp-python`
that activate `METAL`: you have to pass `-DLLAMA_METAL=on` to the CMake command tha `pip` runs for you (see below).
In other words, one should simply run:
```bash
CMAKE_ARGS="-DLLAMA_METAL=on" pip install --force-reinstall --no-cache-dir llama-cpp-python
```
@ -285,9 +338,10 @@ The above command will force the re-installation of `llama-cpp-python` with `MET
`llama.cpp` locally with your `METAL` libraries (shipped by default with your macOS).
More information is available in the documentation of the libraries themselves:
* [llama-cpp-python](https://github.com/abetlen/llama-cpp-python#installation-with-hardware-acceleration)
* [llama-cpp-python's documentation](https://llama-cpp-python.readthedocs.io/en/latest/#installation-with-hardware-acceleration)
* [llama.cpp](https://github.com/ggerganov/llama.cpp#build)
- [llama-cpp-python](https://github.com/abetlen/llama-cpp-python#installation-with-hardware-acceleration)
- [llama-cpp-python's documentation](https://llama-cpp-python.readthedocs.io/en/latest/#installation-with-hardware-acceleration)
- [llama.cpp](https://github.com/ggerganov/llama.cpp#build)
##### Llama-CPP Windows NVIDIA GPU support
@ -297,11 +351,11 @@ dependencies.
Some tips to get it working with an NVIDIA card and CUDA (Tested on Windows 10 with CUDA 11.5 RTX 3070):
* Install latest VS2022 (and build tools) https://visualstudio.microsoft.com/vs/community/
* Install CUDA toolkit https://developer.nvidia.com/cuda-downloads
* Verify your installation is correct by running `nvcc --version` and `nvidia-smi`, ensure your CUDA version is up to
- Install latest VS2022 (and build tools) https://visualstudio.microsoft.com/vs/community/
- Install CUDA toolkit https://developer.nvidia.com/cuda-downloads
- Verify your installation is correct by running `nvcc --version` and `nvidia-smi`, ensure your CUDA version is up to
date and your GPU is detected.
* [Optional] Install CMake to troubleshoot building issues by compiling llama.cpp directly https://cmake.org/download/
- [Optional] Install CMake to troubleshoot building issues by compiling llama.cpp directly https://cmake.org/download/
If you have all required dependencies properly configured running the
following powershell command should succeed.
@ -332,9 +386,9 @@ dependencies.
Some tips:
* Make sure you have an up-to-date C++ compiler
* Install CUDA toolkit https://developer.nvidia.com/cuda-downloads
* Verify your installation is correct by running `nvcc --version` and `nvidia-smi`, ensure your CUDA version is up to
- Make sure you have an up-to-date C++ compiler
- Install CUDA toolkit https://developer.nvidia.com/cuda-downloads
- Verify your installation is correct by running `nvcc --version` and `nvidia-smi`, ensure your CUDA version is up to
date and your GPU is detected.
After that running the following command in the repository will install llama.cpp with GPU support:
@ -356,13 +410,17 @@ AVX = 1 | AVX2 = 1 | AVX512 = 0 | AVX512_VBMI = 0 | AVX512_VNNI = 0 | FMA = 1 |
Linux GPU support is done through ROCm.
Some tips:
* Install ROCm from [quick-start install guide](https://rocm.docs.amd.com/projects/install-on-linux/en/latest/tutorial/quick-start.html)
* [Install PyTorch for ROCm](https://rocm.docs.amd.com/projects/radeon/en/latest/docs/install/install-pytorch.html)
- Install ROCm from [quick-start install guide](https://rocm.docs.amd.com/projects/install-on-linux/en/latest/tutorial/quick-start.html)
- [Install PyTorch for ROCm](https://rocm.docs.amd.com/projects/radeon/en/latest/docs/install/install-pytorch.html)
```bash
wget https://repo.radeon.com/rocm/manylinux/rocm-rel-6.0/torch-2.1.1%2Brocm6.0-cp311-cp311-linux_x86_64.whl
poetry run pip install --force-reinstall --no-cache-dir torch-2.1.1+rocm6.0-cp311-cp311-linux_x86_64.whl
```
* Install bitsandbytes for ROCm
- Install bitsandbytes for ROCm
```bash
PYTORCH_ROCM_ARCH=gfx900,gfx906,gfx908,gfx90a,gfx1030,gfx1100,gfx1101,gfx940,gfx941,gfx942
BITSANDBYTES_VERSION=62353b0200b8557026c176e74ac48b84b953a854
@ -374,6 +432,7 @@ pip install . --extra-index-url https://download.pytorch.org/whl/nightly
```
After that running the following command in the repository will install llama.cpp with GPU support:
```bash
LLAMA_CPP_PYTHON_VERSION=0.2.56
DAMDGPU_TARGETS=gfx900;gfx906;gfx908;gfx90a;gfx1030;gfx1100;gfx1101;gfx940;gfx941;gfx942
@ -391,15 +450,15 @@ AVX = 1 | AVX_VNNI = 0 | AVX2 = 1 | AVX512 = 0 | AVX512_VBMI = 0 | AVX512_VNNI =
Execution of LLMs locally still has a lot of sharp edges, specially when running on non Linux platforms.
You might encounter several issues:
* Performance: RAM or VRAM usage is very high, your computer might experience slowdowns or even crashes.
* GPU Virtualization on Windows and OSX: Simply not possible with docker desktop, you have to run the server directly on
- Performance: RAM or VRAM usage is very high, your computer might experience slowdowns or even crashes.
- GPU Virtualization on Windows and OSX: Simply not possible with docker desktop, you have to run the server directly on
the host.
* Building errors: Some of PrivateGPT dependencies need to build native code, and they might fail on some platforms.
- Building errors: Some of PrivateGPT dependencies need to build native code, and they might fail on some platforms.
Most likely you are missing some dev tools in your machine (updated C++ compiler, CUDA is not on PATH, etc.).
If you encounter any of these issues, please open an issue and we'll try to help.
One of the first reflex to adopt is: get more information.
If, during your installation, something does not go as planned, retry in *verbose* mode, and see what goes wrong.
If, during your installation, something does not go as planned, retry in _verbose_ mode, and see what goes wrong.
For example, when installing packages with `pip install`, you can add the option `-vvv` to show the details of the installation.
@ -414,8 +473,8 @@ To install a C++ compiler on Windows 10/11, follow these steps:
1. Install Visual Studio 2022.
2. Make sure the following components are selected:
* Universal Windows Platform development
* C++ CMake tools for Windows
- Universal Windows Platform development
- C++ CMake tools for Windows
3. Download the MinGW installer from the [MinGW website](https://sourceforge.net/projects/mingw/).
4. Run the installer and select the `gcc` component.

39
poetry.lock generated
View File

@ -2685,6 +2685,21 @@ llama-index-core = ">=0.11.0,<0.12.0"
llama-index-embeddings-openai = ">=0.2.3,<0.3.0"
llama-index-llms-azure-openai = ">=0.2.0,<0.3.0"
[[package]]
name = "llama-index-embeddings-fireworks"
version = "0.2.0"
description = "llama-index embeddings fireworks integration"
optional = true
python-versions = "<3.12,>=3.8.1"
files = [
{file = "llama_index_embeddings_fireworks-0.2.0-py3-none-any.whl", hash = "sha256:44958479691f55005bd3bbf773316c556e5b1428c6ec174a4f443016e79e48ea"},
{file = "llama_index_embeddings_fireworks-0.2.0.tar.gz", hash = "sha256:0085a8fd5b4d4f71f797cfef11a85c4c3fbe763a3680edeae8f410184fa2d266"},
]
[package.dependencies]
llama-index-core = ">=0.11.0,<0.12.0"
llama-index-llms-openai = ">=0.2.0,<0.3.0"
[[package]]
name = "llama-index-embeddings-gemini"
version = "0.2.0"
@ -2778,6 +2793,21 @@ httpx = "*"
llama-index-core = ">=0.11.0,<0.12.0"
llama-index-llms-openai = ">=0.2.1,<0.3.0"
[[package]]
name = "llama-index-llms-fireworks"
version = "0.2.0"
description = "llama-index llms fireworks integration"
optional = true
python-versions = "<4.0,>=3.8.1"
files = [
{file = "llama_index_llms_fireworks-0.2.0-py3-none-any.whl", hash = "sha256:65a604f8cf622f7ce695c458d375cd7dac6e27f4596ba90e5464b2594b0688a0"},
{file = "llama_index_llms_fireworks-0.2.0.tar.gz", hash = "sha256:cfdd07b6bc01890e55a4dfc3af2e62fe82e5a08b362d52314d024728ebcf7c5b"},
]
[package.dependencies]
llama-index-core = ">=0.11.0,<0.12.0"
llama-index-llms-openai = ">=0.2.0,<0.3.0"
[[package]]
name = "llama-index-llms-gemini"
version = "0.3.5"
@ -6242,11 +6272,6 @@ files = [
{file = "triton-3.0.0-1-cp312-cp312-manylinux2014_x86_64.manylinux_2_17_x86_64.whl", hash = "sha256:34e509deb77f1c067d8640725ef00c5cbfcb2052a1a3cb6a6d343841f92624eb"},
{file = "triton-3.0.0-1-cp38-cp38-manylinux2014_x86_64.manylinux_2_17_x86_64.whl", hash = "sha256:bcbf3b1c48af6a28011a5c40a5b3b9b5330530c3827716b5fbf6d7adcc1e53e9"},
{file = "triton-3.0.0-1-cp39-cp39-manylinux2014_x86_64.manylinux_2_17_x86_64.whl", hash = "sha256:6e5727202f7078c56f91ff13ad0c1abab14a0e7f2c87e91b12b6f64f3e8ae609"},
{file = "triton-3.0.0-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:39b052da883351fdf6be3d93cedae6db3b8e3988d3b09ed221bccecfa9612230"},
{file = "triton-3.0.0-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:cd34f19a8582af96e6291d4afce25dac08cb2a5d218c599163761e8e0827208e"},
{file = "triton-3.0.0-cp312-cp312-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:0d5e10de8c011adeb7c878c6ce0dd6073b14367749e34467f1cff2bde1b78253"},
{file = "triton-3.0.0-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:e8903767951bf86ec960b4fe4e21bc970055afc65e9d57e916d79ae3c93665e3"},
{file = "triton-3.0.0-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:41004fb1ae9a53fcb3e970745feb87f0e3c94c6ce1ba86e95fa3b8537894bef7"},
]
[package.dependencies]
@ -7082,6 +7107,7 @@ cffi = ["cffi (>=1.11)"]
[extras]
embeddings-azopenai = ["llama-index-embeddings-azure-openai"]
embeddings-fireworks = ["llama-index-embeddings-fireworks"]
embeddings-gemini = ["llama-index-embeddings-gemini"]
embeddings-huggingface = ["einops", "llama-index-embeddings-huggingface"]
embeddings-mistral = ["llama-index-embeddings-mistralai"]
@ -7089,6 +7115,7 @@ embeddings-ollama = ["llama-index-embeddings-ollama"]
embeddings-openai = ["llama-index-embeddings-openai"]
embeddings-sagemaker = ["boto3"]
llms-azopenai = ["llama-index-llms-azure-openai"]
llms-fireworks = ["llama-index-llms-fireworks"]
llms-gemini = ["llama-index-llms-gemini"]
llms-llama-cpp = ["llama-index-llms-llama-cpp"]
llms-ollama = ["llama-index-llms-ollama"]
@ -7107,4 +7134,4 @@ vector-stores-qdrant = ["llama-index-vector-stores-qdrant"]
[metadata]
lock-version = "2.0"
python-versions = ">=3.11,<3.12"
content-hash = "16e3be4521aa64c936ee8fb841655f15090b71cf8faaeed7e73a4bcdf3fbdea2"
content-hash = "f41ee2165df33fd6815114a9d6b01508e1e8726dd7a8baf99825514586f250f0"

View File

@ -67,6 +67,24 @@ class EmbeddingComponent:
api_key=api_key,
model=model,
)
case "fireworks":
try:
from llama_index.embeddings.fireworks import ( # type: ignore
FireworksEmbedding,
)
except ImportError as e:
raise ImportError(
"FireworksEmbedding dependencies not found, install with `poetry install --extras embeddings-fireworks`"
) from e
api_key = (
settings.fireworks.embedding_api_key or settings.fireworks.api_key
)
model = settings.openai.embedding_model
self.embedding_model = FireworksEmbedding(
api_key=api_key,
model=model,
)
case "ollama":
try:
from llama_index.embeddings.ollama import ( # type: ignore

View File

@ -102,6 +102,19 @@ class LLMComponent:
api_key=openai_settings.api_key,
model=openai_settings.model,
)
case "fireworks":
try:
from llama_index.llms.fireworks import Fireworks # type: ignore
except ImportError as e:
raise ImportError(
"fireworks dependencies not found, install with `poetry install --extras llms-fireworks`"
) from e
fireworks_settings = settings.fireworks
self.llm = Fireworks(
model=fireworks_settings.model,
api_key=fireworks_settings.api_key,
)
case "openailike":
try:
from llama_index.llms.openai_like import OpenAILike # type: ignore

View File

@ -115,6 +115,7 @@ class LLMSettings(BaseModel):
"mock",
"ollama",
"gemini",
"fireworks",
]
max_new_tokens: int = Field(
256,
@ -205,6 +206,7 @@ class EmbeddingSettings(BaseModel):
"mock",
"gemini",
"mistralai",
"fireworks",
]
ingest_mode: Literal["simple", "batch", "parallel", "pipeline"] = Field(
"simple",
@ -268,6 +270,23 @@ class OpenAISettings(BaseModel):
)
class FireWorksSettings(BaseModel):
api_key: str
model: str = Field(
"accounts/fireworks/models/llama-v3p1-70b-instruct",
description="FireWorks Model to use. Example: 'accounts/fireworks/models/llama-v3p1-70b-instruct'.",
)
embedding_api_base: str = Field(
None,
description="Base URL of FIREWORKS API. Example: 'https://api.fireworks.ai/inference/v1'.",
)
embedding_api_key: str
embedding_model: str = Field(
"nomic-ai/nomic-embed-text-v1.5",
description="FIREWORKS embedding Model to use. Example: 'nomic-ai/nomic-embed-text-v1.5'.",
)
class GeminiSettings(BaseModel):
api_key: str
model: str = Field(
@ -597,6 +616,7 @@ class Settings(BaseModel):
huggingface: HuggingFaceSettings
sagemaker: SagemakerSettings
openai: OpenAISettings
fireworks: FireWorksSettings
gemini: GeminiSettings
ollama: OllamaSettings
azopenai: AzureOpenAISettings

View File

@ -381,7 +381,7 @@ class PrivateGptUi:
".contain { display: flex !important; flex-direction: column !important; }"
"#component-0, #component-3, #component-10, #component-8 { height: 100% !important; }"
"#chatbot { flex-grow: 1 !important; overflow: auto !important;}"
"#col { height: calc(100vh - 112px - 16px) !important; }"
"#col { min-height: calc(100vh - 112px - 16px) !important; }"
"hr { margin-top: 1em; margin-bottom: 1em; border: 0; border-top: 1px solid #FFF; }"
".avatar-image { background-color: antiquewhite; border-radius: 2px; }"
".footer { text-align: center; margin-top: 20px; font-size: 14px; display: flex; align-items: center; justify-content: center; }"
@ -522,6 +522,7 @@ class PrivateGptUi:
model_mapping = {
"llamacpp": config_settings.llamacpp.llm_hf_model_file,
"openai": config_settings.openai.model,
"fireworks": config_settings.fireworks.model,
"openailike": config_settings.openai.model,
"azopenai": config_settings.azopenai.llm_model,
"sagemaker": config_settings.sagemaker.llm_endpoint_name,

View File

@ -38,6 +38,8 @@ llama-index-vector-stores-postgres = {version ="*", optional = true}
llama-index-vector-stores-clickhouse = {version ="*", optional = true}
llama-index-storage-docstore-postgres = {version ="*", optional = true}
llama-index-storage-index-store-postgres = {version ="*", optional = true}
llama-index-llms-fireworks = {version = "*", optional = true}
llama-index-embeddings-fireworks = {version = "*", optional = true}
# Postgres
psycopg2-binary = {version ="^2.9.9", optional = true}
asyncpg = {version="^0.29.0", optional = true}
@ -83,6 +85,8 @@ vector-stores-postgres = ["llama-index-vector-stores-postgres"]
vector-stores-milvus = ["llama-index-vector-stores-milvus"]
storage-nodestore-postgres = ["llama-index-storage-docstore-postgres","llama-index-storage-index-store-postgres","psycopg2-binary","asyncpg"]
rerank-sentence-transformers = ["torch", "sentence-transformers"]
llms-fireworks = ["llama-index-llms-fireworks"]
embeddings-fireworks = ["llama-index-embeddings-fireworks"]
[tool.poetry.group.dev.dependencies]
black = "^24"

13
settings-fireworks.yaml Normal file
View File

@ -0,0 +1,13 @@
server:
env_name: ${APP_ENV:fireworks}
llm:
mode: fireworks
embedding:
mode: fireworks
fireworks:
api_key: ${FIREWORKS_API_KEY:}
model: "accounts/fireworks/models/llama-v3p1-70b-instruct"
#poetry install --extras "ui llms-fireworks embeddings-fireworks vector-stores-qdrant embeddings-openai"

View File

@ -54,7 +54,7 @@ llm:
context_window: 3900
# Select your tokenizer. Llama-index tokenizer is the default.
# tokenizer: meta-llama/Meta-Llama-3.1-8B-Instruct
temperature: 0.1 # The temperature of the model. Increasing the temperature will make the model answer more creatively. A value of 0.1 would be more factual. (Default: 0.1)
temperature: 0.1 # The temperature of the model. Increasing the temperature will make the model answer more creatively. A value of 0.1 would be more factual. (Default: 0.1)
rag:
similarity_top_k: 2
@ -70,19 +70,19 @@ summarize:
use_async: true
clickhouse:
host: localhost
port: 8443
username: admin
password: clickhouse
database: embeddings
host: localhost
port: 8443
username: admin
password: clickhouse
database: embeddings
llamacpp:
llm_hf_repo_id: lmstudio-community/Meta-Llama-3.1-8B-Instruct-GGUF
llm_hf_model_file: Meta-Llama-3.1-8B-Instruct-Q4_K_M.gguf
tfs_z: 1.0 # Tail free sampling is used to reduce the impact of less probable tokens from the output. A higher value (e.g., 2.0) will reduce the impact more, while a value of 1.0 disables this setting
top_k: 40 # Reduces the probability of generating nonsense. A higher value (e.g. 100) will give more diverse answers, while a lower value (e.g. 10) will be more conservative. (Default: 40)
top_p: 1.0 # Works together with top-k. A higher value (e.g., 0.95) will lead to more diverse text, while a lower value (e.g., 0.5) will generate more focused and conservative text. (Default: 0.9)
repeat_penalty: 1.1 # Sets how strongly to penalize repetitions. A higher value (e.g., 1.5) will penalize repetitions more strongly, while a lower value (e.g., 0.9) will be more lenient. (Default: 1.1)
tfs_z: 1.0 # Tail free sampling is used to reduce the impact of less probable tokens from the output. A higher value (e.g., 2.0) will reduce the impact more, while a value of 1.0 disables this setting
top_k: 40 # Reduces the probability of generating nonsense. A higher value (e.g. 100) will give more diverse answers, while a lower value (e.g. 10) will be more conservative. (Default: 40)
top_p: 1.0 # Works together with top-k. A higher value (e.g., 0.95) will lead to more diverse text, while a lower value (e.g., 0.5) will generate more focused and conservative text. (Default: 0.9)
repeat_penalty: 1.1 # Sets how strongly to penalize repetitions. A higher value (e.g., 1.5) will penalize repetitions more strongly, while a lower value (e.g., 0.9) will be more lenient. (Default: 1.1)
embedding:
# Should be matching the value above in most cases
@ -128,11 +128,16 @@ openai:
model: gpt-3.5-turbo
embedding_api_key: ${OPENAI_API_KEY:}
fireworks:
api_key: ${FIREWORKS_API_KEY:}
model: "accounts/fireworks/models/llama-v3p1-70b-instruct"
embedding_api_key: ${FIREWORKS_API_KEY:}
ollama:
llm_model: llama3.1
embedding_model: nomic-embed-text
api_base: http://localhost:11434
embedding_api_base: http://localhost:11434 # change if your embedding model runs on another ollama
embedding_api_base: http://localhost:11434 # change if your embedding model runs on another ollama
keep_alive: 5m
request_timeout: 120.0
autopull_models: true