mirror of
https://github.com/imartinez/privateGPT.git
synced 2025-09-16 15:19:16 +00:00
feat(ingest): Created a faster ingestion mode - pipeline (#1750)
* Unify pgvector and postgres connection settings * Remove local changes * Update file pgvector->postgres * postgresql should be postgres * Adding pipeline ingestion mode * disable hugging face parallelism. Continue on file to doc transform failure * Semaphore to limit docq async workers. ETA reporting
This commit is contained in:
122
private_gpt/utils/eta.py
Normal file
122
private_gpt/utils/eta.py
Normal file
@@ -0,0 +1,122 @@
|
||||
import datetime
|
||||
import logging
|
||||
import math
|
||||
import time
|
||||
from collections import deque
|
||||
from typing import Any
|
||||
|
||||
logger = logging.getLogger(__name__)
|
||||
|
||||
|
||||
def human_time(*args: Any, **kwargs: Any) -> str:
|
||||
def timedelta_total_seconds(timedelta: datetime.timedelta) -> float:
|
||||
return (
|
||||
timedelta.microseconds
|
||||
+ 0.0
|
||||
+ (timedelta.seconds + timedelta.days * 24 * 3600) * 10**6
|
||||
) / 10**6
|
||||
|
||||
secs = float(timedelta_total_seconds(datetime.timedelta(*args, **kwargs)))
|
||||
# We want (ms) precision below 2 seconds
|
||||
if secs < 2:
|
||||
return f"{secs * 1000}ms"
|
||||
units = [("y", 86400 * 365), ("d", 86400), ("h", 3600), ("m", 60), ("s", 1)]
|
||||
parts = []
|
||||
for unit, mul in units:
|
||||
if secs / mul >= 1 or mul == 1:
|
||||
if mul > 1:
|
||||
n = int(math.floor(secs / mul))
|
||||
secs -= n * mul
|
||||
else:
|
||||
# >2s we drop the (ms) component.
|
||||
n = int(secs)
|
||||
if n:
|
||||
parts.append(f"{n}{unit}")
|
||||
return " ".join(parts)
|
||||
|
||||
|
||||
def eta(iterator: list[Any]) -> Any:
|
||||
"""Report an ETA after 30s and every 60s thereafter."""
|
||||
total = len(iterator)
|
||||
_eta = ETA(total)
|
||||
_eta.needReport(30)
|
||||
for processed, data in enumerate(iterator, start=1):
|
||||
yield data
|
||||
_eta.update(processed)
|
||||
if _eta.needReport(60):
|
||||
logger.info(f"{processed}/{total} - ETA {_eta.human_time()}")
|
||||
|
||||
|
||||
class ETA:
|
||||
"""Predict how long something will take to complete."""
|
||||
|
||||
def __init__(self, total: int):
|
||||
self.total: int = total # Total expected records.
|
||||
self.rate: float = 0.0 # per second
|
||||
self._timing_data: deque[tuple[float, int]] = deque(maxlen=100)
|
||||
self.secondsLeft: float = 0.0
|
||||
self.nexttime: float = 0.0
|
||||
|
||||
def human_time(self) -> str:
|
||||
if self._calc():
|
||||
return f"{human_time(seconds=self.secondsLeft)} @ {int(self.rate * 60)}/min"
|
||||
return "(computing)"
|
||||
|
||||
def update(self, count: int) -> None:
|
||||
# count should be in the range 0 to self.total
|
||||
assert count > 0
|
||||
assert count <= self.total
|
||||
self._timing_data.append((time.time(), count)) # (X,Y) for pearson
|
||||
|
||||
def needReport(self, whenSecs: int) -> bool:
|
||||
now = time.time()
|
||||
if now > self.nexttime:
|
||||
self.nexttime = now + whenSecs
|
||||
return True
|
||||
return False
|
||||
|
||||
def _calc(self) -> bool:
|
||||
# A sample before a prediction. Need two points to compute slope!
|
||||
if len(self._timing_data) < 3:
|
||||
return False
|
||||
|
||||
# http://en.wikipedia.org/wiki/Pearson_product-moment_correlation_coefficient
|
||||
# Calculate means and standard deviations.
|
||||
samples = len(self._timing_data)
|
||||
# column wise sum of the timing tuples to compute their mean.
|
||||
mean_x, mean_y = (
|
||||
sum(i) / samples for i in zip(*self._timing_data, strict=False)
|
||||
)
|
||||
std_x = math.sqrt(
|
||||
sum(pow(i[0] - mean_x, 2) for i in self._timing_data) / (samples - 1)
|
||||
)
|
||||
std_y = math.sqrt(
|
||||
sum(pow(i[1] - mean_y, 2) for i in self._timing_data) / (samples - 1)
|
||||
)
|
||||
|
||||
# Calculate coefficient.
|
||||
sum_xy, sum_sq_v_x, sum_sq_v_y = 0.0, 0.0, 0
|
||||
for x, y in self._timing_data:
|
||||
x -= mean_x
|
||||
y -= mean_y
|
||||
sum_xy += x * y
|
||||
sum_sq_v_x += pow(x, 2)
|
||||
sum_sq_v_y += pow(y, 2)
|
||||
pearson_r = sum_xy / math.sqrt(sum_sq_v_x * sum_sq_v_y)
|
||||
|
||||
# Calculate regression line.
|
||||
# y = mx + b where m is the slope and b is the y-intercept.
|
||||
m = self.rate = pearson_r * (std_y / std_x)
|
||||
y = self.total
|
||||
b = mean_y - m * mean_x
|
||||
x = (y - b) / m
|
||||
|
||||
# Calculate fitted line (transformed/shifted regression line horizontally).
|
||||
fitted_b = self._timing_data[-1][1] - (m * self._timing_data[-1][0])
|
||||
fitted_x = (y - fitted_b) / m
|
||||
_, count = self._timing_data[-1] # adjust last data point progress count
|
||||
adjusted_x = ((fitted_x - x) * (count / self.total)) + x
|
||||
eta_epoch = adjusted_x
|
||||
|
||||
self.secondsLeft = max([eta_epoch - time.time(), 0])
|
||||
return True
|
Reference in New Issue
Block a user