mirror of
https://github.com/imartinez/privateGPT.git
synced 2025-06-24 22:42:18 +00:00
Update code to use sentence-transformers through huggingfaceembeddings
This commit is contained in:
parent
8a5b2f453b
commit
23d24c88e9
@ -1,5 +1,5 @@
|
|||||||
PERSIST_DIRECTORY=db
|
PERSIST_DIRECTORY=db
|
||||||
LLAMA_EMBEDDINGS_MODEL=models/ggml-model-q4_0.bin
|
|
||||||
MODEL_TYPE=GPT4All
|
MODEL_TYPE=GPT4All
|
||||||
MODEL_PATH=models/ggml-gpt4all-j-v1.3-groovy.bin
|
MODEL_PATH=models/ggml-gpt4all-j-v1.3-groovy.bin
|
||||||
|
EMBEDDINGS_MODEL_NAME=all-MiniLM-L6-v2
|
||||||
MODEL_N_CTX=1000
|
MODEL_N_CTX=1000
|
15
ingest.py
15
ingest.py
@ -6,7 +6,7 @@ from dotenv import load_dotenv
|
|||||||
from langchain.document_loaders import TextLoader, PDFMinerLoader, CSVLoader
|
from langchain.document_loaders import TextLoader, PDFMinerLoader, CSVLoader
|
||||||
from langchain.text_splitter import RecursiveCharacterTextSplitter
|
from langchain.text_splitter import RecursiveCharacterTextSplitter
|
||||||
from langchain.vectorstores import Chroma
|
from langchain.vectorstores import Chroma
|
||||||
from langchain.embeddings import LlamaCppEmbeddings
|
from langchain.embeddings import HuggingFaceEmbeddings
|
||||||
from langchain.docstore.document import Document
|
from langchain.docstore.document import Document
|
||||||
from constants import CHROMA_SETTINGS
|
from constants import CHROMA_SETTINGS
|
||||||
|
|
||||||
@ -38,22 +38,23 @@ def main():
|
|||||||
# Load environment variables
|
# Load environment variables
|
||||||
persist_directory = os.environ.get('PERSIST_DIRECTORY')
|
persist_directory = os.environ.get('PERSIST_DIRECTORY')
|
||||||
source_directory = os.environ.get('SOURCE_DIRECTORY', 'source_documents')
|
source_directory = os.environ.get('SOURCE_DIRECTORY', 'source_documents')
|
||||||
llama_embeddings_model = os.environ.get('LLAMA_EMBEDDINGS_MODEL')
|
embeddings_model_name = os.environ.get('EMBEDDINGS_MODEL_NAME')
|
||||||
model_n_ctx = os.environ.get('MODEL_N_CTX')
|
|
||||||
|
|
||||||
# Load documents and split in chunks
|
# Load documents and split in chunks
|
||||||
print(f"Loading documents from {source_directory}")
|
print(f"Loading documents from {source_directory}")
|
||||||
|
chunk_size = 500
|
||||||
|
chunk_overlap = 50
|
||||||
documents = load_documents(source_directory)
|
documents = load_documents(source_directory)
|
||||||
text_splitter = RecursiveCharacterTextSplitter(chunk_size=500, chunk_overlap=50)
|
text_splitter = RecursiveCharacterTextSplitter(chunk_size=chunk_size, chunk_overlap=chunk_overlap)
|
||||||
texts = text_splitter.split_documents(documents)
|
texts = text_splitter.split_documents(documents)
|
||||||
print(f"Loaded {len(documents)} documents from {source_directory}")
|
print(f"Loaded {len(documents)} documents from {source_directory}")
|
||||||
print(f"Split into {len(texts)} chunks of text (max. 500 tokens each)")
|
print(f"Split into {len(texts)} chunks of text (max. {chunk_size} characters each)")
|
||||||
|
|
||||||
# Create embeddings
|
# Create embeddings
|
||||||
llama = LlamaCppEmbeddings(model_path=llama_embeddings_model, n_ctx=model_n_ctx)
|
embeddings = HuggingFaceEmbeddings(model_name=embeddings_model_name)
|
||||||
|
|
||||||
# Create and store locally vectorstore
|
# Create and store locally vectorstore
|
||||||
db = Chroma.from_documents(texts, llama, persist_directory=persist_directory, client_settings=CHROMA_SETTINGS)
|
db = Chroma.from_documents(texts, embeddings, persist_directory=persist_directory, client_settings=CHROMA_SETTINGS)
|
||||||
db.persist()
|
db.persist()
|
||||||
db = None
|
db = None
|
||||||
|
|
||||||
|
@ -1,6 +1,6 @@
|
|||||||
from dotenv import load_dotenv
|
from dotenv import load_dotenv
|
||||||
from langchain.chains import RetrievalQA
|
from langchain.chains import RetrievalQA
|
||||||
from langchain.embeddings import LlamaCppEmbeddings
|
from langchain.embeddings import HuggingFaceEmbeddings
|
||||||
from langchain.callbacks.streaming_stdout import StreamingStdOutCallbackHandler
|
from langchain.callbacks.streaming_stdout import StreamingStdOutCallbackHandler
|
||||||
from langchain.vectorstores import Chroma
|
from langchain.vectorstores import Chroma
|
||||||
from langchain.llms import GPT4All, LlamaCpp
|
from langchain.llms import GPT4All, LlamaCpp
|
||||||
@ -8,7 +8,7 @@ import os
|
|||||||
|
|
||||||
load_dotenv()
|
load_dotenv()
|
||||||
|
|
||||||
llama_embeddings_model = os.environ.get("LLAMA_EMBEDDINGS_MODEL")
|
embeddings_model_name = os.environ.get("EMBEDDINGS_MODEL_NAME")
|
||||||
persist_directory = os.environ.get('PERSIST_DIRECTORY')
|
persist_directory = os.environ.get('PERSIST_DIRECTORY')
|
||||||
|
|
||||||
model_type = os.environ.get('MODEL_TYPE')
|
model_type = os.environ.get('MODEL_TYPE')
|
||||||
@ -18,8 +18,8 @@ model_n_ctx = os.environ.get('MODEL_N_CTX')
|
|||||||
from constants import CHROMA_SETTINGS
|
from constants import CHROMA_SETTINGS
|
||||||
|
|
||||||
def main():
|
def main():
|
||||||
llama = LlamaCppEmbeddings(model_path=llama_embeddings_model, n_ctx=model_n_ctx)
|
embeddings = HuggingFaceEmbeddings(model_name=embeddings_model_name)
|
||||||
db = Chroma(persist_directory=persist_directory, embedding_function=llama, client_settings=CHROMA_SETTINGS)
|
db = Chroma(persist_directory=persist_directory, embedding_function=embeddings, client_settings=CHROMA_SETTINGS)
|
||||||
retriever = db.as_retriever()
|
retriever = db.as_retriever()
|
||||||
# Prepare the LLM
|
# Prepare the LLM
|
||||||
callbacks = [StreamingStdOutCallbackHandler()]
|
callbacks = [StreamingStdOutCallbackHandler()]
|
||||||
|
Loading…
Reference in New Issue
Block a user