.env + LlamaCpp + PDF/CSV + Ingest All

.env

Added an env file to make configuration easier

LlamaCpp

Added support for LlamaCpp in .env (MODEL_TYPE=LlamaCpp)

PDF/CSV

Added support for PDF and CSV files.

Ingest All

All files in source_documents will automatically get stored in vector store based on their file type when running ingest, no longer need a path argument.
This commit is contained in:
alxspiker 2023-05-11 14:24:39 -06:00
parent 60225698b6
commit 52ae6c0866
4 changed files with 49 additions and 18 deletions

View File

@ -1,7 +1,7 @@
# privateGPT
Ask questions to your documents without an internet connection, using the power of LLMs. 100% private, no data leaves your execution environment at any point. You can ingest documents and ask questions without an internet connection!
Built with [LangChain](https://github.com/hwchase17/langchain) and [GPT4All](https://github.com/nomic-ai/gpt4all)
Built with [LangChain](https://github.com/hwchase17/langchain) and [GPT4All](https://github.com/nomic-ai/gpt4all) and [LlamaCpp](https://github.com/ggerganov/llama.cpp)
<img width="902" alt="demo" src="https://user-images.githubusercontent.com/721666/236942256-985801c9-25b9-48ef-80be-3acbb4575164.png">
@ -13,26 +13,29 @@ In order to set your environment up to run the code here, first install all requ
pip install -r requirements.txt
```
Rename example.env to .env and edit the variables appropriately.
MODEL_TYPE supports LlamaCpp or GPT4All
Then, download the 2 models and place them in a folder called `./models`:
- LLM: default to [ggml-gpt4all-j-v1.3-groovy.bin](https://gpt4all.io/models/ggml-gpt4all-j-v1.3-groovy.bin). If you prefer a different GPT4All-J compatible model, just download it and reference it in `privateGPT.py`.
- Embedding: default to [ggml-model-q4_0.bin](https://huggingface.co/Pi3141/alpaca-native-7B-ggml/resolve/397e872bf4c83f4c642317a5bf65ce84a105786e/ggml-model-q4_0.bin). If you prefer a different compatible Embeddings model, just download it and reference it in `privateGPT.py` and `ingest.py`.
- Embedding: default to [ggml-model-q4_0.bin](https://huggingface.co/Pi3141/alpaca-native-7B-ggml/resolve/397e872bf4c83f4c642317a5bf65ce84a105786e/ggml-model-q4_0.bin). If you prefer a different compatible Embeddings model, just download it and reference it in `.env`.
## Test dataset
This repo uses a [state of the union transcript](https://github.com/imartinez/privateGPT/blob/main/source_documents/state_of_the_union.txt) as an example.
## Instructions for ingesting your own dataset
Get your .txt file ready.
Put any and all of your .txt, .pdf, or .csv files into the source_documents directory
Run the following command to ingest the data.
Run the following command to ingest all the data.
```shell
python ingest.py <path_to_your_txt_file>
python ingest.py
```
It will create a `db` folder containing the local vectorstore. Will take time, depending on the size of your document.
You can ingest as many documents as you want by running `ingest`, and all will be accumulated in the local embeddings database.
If you want to start from scratch, delete the `db` folder.
It will create a `db` folder containing the local vectorstore. Will take time, depending on the size of your documents.
You can ingest as many documents as you want, and all will be accumulated in the local embeddings database.
If you want to start from an empty database, delete the `db` folder.
Note: during the ingest process no data leaves your local environment. You could ingest without an internet connection.
@ -59,7 +62,7 @@ Type `exit` to finish the script.
Selecting the right local models and the power of `LangChain` you can run the entire pipeline locally, without any data leaving your environment, and with reasonable performance.
- `ingest.py` uses `LangChain` tools to parse the document and create embeddings locally using `LlamaCppEmbeddings`. It then stores the result in a local vector database using `Chroma` vector store.
- `privateGPT.py` uses a local LLM based on `GPT4All-J` to understand questions and create answers. The context for the answers is extracted from the local vector store using a similarity search to locate the right piece of context from the docs.
- `privateGPT.py` uses a local LLM based on `GPT4All-J` or `LlamaCpp` to understand questions and create answers. The context for the answers is extracted from the local vector store using a similarity search to locate the right piece of context from the docs.
- `GPT4All-J` wrapper was introduced in LangChain 0.0.162.
# Disclaimer

5
example.env Normal file
View File

@ -0,0 +1,5 @@
PERSIST_DIRECTORY=db
LLAMA_EMBEDDINGS_MODEL=models/ggml-model-q4_0.bin
MODEL_TYPE=GPT4All
MODEL_PATH=models/ggml-gpt4all-j-v1.3-groovy.bin
MODEL_N_CTX=1000

View File

@ -1,19 +1,28 @@
from langchain.document_loaders import TextLoader
import os
from langchain.document_loaders import TextLoader, PDFMinerLoader, CSVLoader
from langchain.text_splitter import RecursiveCharacterTextSplitter
from langchain.vectorstores import Chroma
from langchain.embeddings import LlamaCppEmbeddings
from sys import argv
def main():
llama_embeddings_model = os.environ.get('LLAMA_EMBEDDINGS_MODEL')
persist_directory = os.environ.get('PERSIST_DIRECTORY')
model_n_ctx = os.environ.get('MODEL_N_CTX')
# Load document and split in chunks
loader = TextLoader(argv[1], encoding="utf8")
for root, dirs, files in os.walk("source_documents"):
for file in files:
if file.endswith(".txt"):
loader = TextLoader(os.path.join(root, file), encoding="utf8")
elif file.endswith(".pdf"):
loader = PDFMinerLoader(os.path.join(root, file))
elif file.endswith(".csv"):
loader = CSVLoader(os.path.join(root, file))
documents = loader.load()
text_splitter = RecursiveCharacterTextSplitter(chunk_size=500, chunk_overlap=50)
texts = text_splitter.split_documents(documents)
# Create embeddings
llama = LlamaCppEmbeddings(model_path="./models/ggml-model-q4_0.bin")
llama = LlamaCppEmbeddings(model_path=llama_embeddings_model, n_ctx=model_n_ctx)
# Create and store locally vectorstore
persist_directory = 'db'
db = Chroma.from_documents(texts, llama, persist_directory=persist_directory)
db.persist()
db = None

View File

@ -2,17 +2,31 @@ from langchain.chains import RetrievalQA
from langchain.embeddings import LlamaCppEmbeddings
from langchain.callbacks.streaming_stdout import StreamingStdOutCallbackHandler
from langchain.vectorstores import Chroma
from langchain.llms import GPT4All
from langchain.llms import GPT4All, LlamaCpp
import os
llama_embeddings_model = os.environ.get("LLAMA_EMBEDDINGS_MODEL")
persist_directory = os.environ.get('PERSIST_DIRECTORY')
model_type = os.environ.get('MODEL_TYPE')
model_path = os.environ.get('MODEL_PATH')
model_n_ctx = os.environ.get('MODEL_N_CTX')
def main():
# Load stored vectorstore
llama = LlamaCppEmbeddings(model_path="./models/ggml-model-q4_0.bin")
persist_directory = 'db'
llama = LlamaCppEmbeddings(model_path=llama_embeddings_model, n_ctx=model_n_ctx)
db = Chroma(persist_directory=persist_directory, embedding_function=llama)
retriever = db.as_retriever()
# Prepare the LLM
callbacks = [StreamingStdOutCallbackHandler()]
llm = GPT4All(model='./models/ggml-gpt4all-j-v1.3-groovy.bin', backend='gptj', callbacks=callbacks, verbose=False)
match model_type:
case "LlamaCpp":
llm = LlamaCpp(model_path=model_path, n_ctx=model_n_ctx, callbacks=callbacks, verbose=False)
case "GPT4All":
llm = GPT4All(model=model_path, n_ctx=model_n_ctx, backend='gptj', callbacks=callbacks, verbose=False)
case _default:
print(f"Model {model_type} not supported!")
exit;
qa = RetrievalQA.from_chain_type(llm=llm, chain_type="stuff", retriever=retriever, return_source_documents=True)
# Interactive questions and answers
while True: