mirror of
https://github.com/imartinez/privateGPT.git
synced 2025-06-29 16:58:00 +00:00
Added home.py file for /chat route
This commit is contained in:
parent
bcc3f03e25
commit
55565fd3a7
0
Celery.pdf
Normal file
0
Celery.pdf
Normal file
@ -1,3 +1,4 @@
|
||||
from pathlib import Path
|
||||
|
||||
PROJECT_ROOT_PATH: Path = Path(__file__).parents[1]
|
||||
UPLOAD_DIR = rf"F:\LLM\privateGPT\private_gpt\uploads"
|
218
private_gpt/home.py
Normal file
218
private_gpt/home.py
Normal file
@ -0,0 +1,218 @@
|
||||
"""This file should be imported only and only if you want to run the UI locally."""
|
||||
from fastapi import Request
|
||||
from fastapi.responses import StreamingResponse
|
||||
import itertools
|
||||
import logging
|
||||
from collections.abc import Iterable
|
||||
from pathlib import Path
|
||||
from typing import Any, List
|
||||
|
||||
from fastapi import APIRouter, Depends, Request, FastAPI, Body
|
||||
from fastapi.responses import JSONResponse
|
||||
from gradio.themes.utils.colors import slate # type: ignore
|
||||
from injector import inject, singleton
|
||||
from llama_index.llms import ChatMessage, ChatResponse, MessageRole
|
||||
from pydantic import BaseModel
|
||||
|
||||
from private_gpt.constants import PROJECT_ROOT_PATH
|
||||
from private_gpt.di import global_injector
|
||||
from private_gpt.server.chat.chat_service import ChatService, CompletionGen
|
||||
from private_gpt.server.chunks.chunks_service import Chunk, ChunksService
|
||||
from private_gpt.server.ingest.ingest_service import IngestService
|
||||
from private_gpt.settings.settings import settings
|
||||
from private_gpt.ui.images import logo_svg
|
||||
from private_gpt.ui.common import Source
|
||||
|
||||
logger = logging.getLogger(__name__)
|
||||
|
||||
THIS_DIRECTORY_RELATIVE = Path(__file__).parent.relative_to(PROJECT_ROOT_PATH)
|
||||
# Should be "private_gpt/ui/avatar-bot.ico"
|
||||
AVATAR_BOT = THIS_DIRECTORY_RELATIVE / "avatar-bot.ico"
|
||||
|
||||
UI_TAB_TITLE = "My Private GPT"
|
||||
|
||||
SOURCES_SEPARATOR = "\n\n Sources: \n"
|
||||
|
||||
MODES = ["Query Docs", "Search in Docs", "LLM Chat"]
|
||||
home_router = APIRouter(prefix="/v1")
|
||||
|
||||
|
||||
|
||||
@singleton
|
||||
class Home:
|
||||
@inject
|
||||
def __init__(
|
||||
self,
|
||||
ingest_service: IngestService,
|
||||
chat_service: ChatService,
|
||||
chunks_service: ChunksService,
|
||||
) -> None:
|
||||
self._ingest_service = ingest_service
|
||||
self._chat_service = chat_service
|
||||
self._chunks_service = chunks_service
|
||||
|
||||
# Initialize system prompt based on default mode
|
||||
self.mode = MODES[0]
|
||||
self._system_prompt = self._get_default_system_prompt(self.mode)
|
||||
|
||||
def _chat(self, message: str, history: list[list[str]], mode: str, *_: Any) -> Any:
|
||||
def yield_deltas(completion_gen: CompletionGen) -> Iterable[str]:
|
||||
full_response: str = ""
|
||||
stream = completion_gen.response
|
||||
for delta in stream:
|
||||
if isinstance(delta, str):
|
||||
full_response += str(delta)
|
||||
elif isinstance(delta, ChatResponse):
|
||||
full_response += delta.delta or ""
|
||||
yield full_response
|
||||
|
||||
if completion_gen.sources:
|
||||
full_response += SOURCES_SEPARATOR
|
||||
cur_sources = Source.curate_sources(completion_gen.sources)
|
||||
sources_text = "\n\n\n".join(
|
||||
f'<a href="{source.page_link}" target="_blank" rel="noopener noreferrer">{index}. {source.file} (page {source.page})</a>'
|
||||
for index, source in enumerate(cur_sources, start=1)
|
||||
)
|
||||
full_response += sources_text
|
||||
print(full_response)
|
||||
yield full_response
|
||||
|
||||
def build_history() -> list[ChatMessage]:
|
||||
history_messages: list[ChatMessage] = list(
|
||||
itertools.chain(
|
||||
*[
|
||||
[
|
||||
ChatMessage(
|
||||
content=interaction[0], role=MessageRole.USER),
|
||||
ChatMessage(
|
||||
# Remove from history content the Sources information
|
||||
content=interaction[1].split(
|
||||
SOURCES_SEPARATOR)[0],
|
||||
role=MessageRole.ASSISTANT,
|
||||
),
|
||||
]
|
||||
for interaction in history
|
||||
]
|
||||
)
|
||||
)
|
||||
|
||||
# max 20 messages to try to avoid context overflow
|
||||
return history_messages[:20]
|
||||
|
||||
new_message = ChatMessage(content=message, role=MessageRole.USER)
|
||||
all_messages = [*build_history(), new_message]
|
||||
# If a system prompt is set, add it as a system message
|
||||
if self._system_prompt:
|
||||
all_messages.insert(
|
||||
0,
|
||||
ChatMessage(
|
||||
content=self._system_prompt,
|
||||
role=MessageRole.SYSTEM,
|
||||
),
|
||||
)
|
||||
match mode:
|
||||
case "Query Docs":
|
||||
query_stream = self._chat_service.stream_chat(
|
||||
messages=all_messages,
|
||||
use_context=True,
|
||||
)
|
||||
yield from yield_deltas(query_stream)
|
||||
case "LLM Chat":
|
||||
llm_stream = self._chat_service.stream_chat(
|
||||
messages=all_messages,
|
||||
use_context=False,
|
||||
)
|
||||
yield from yield_deltas(llm_stream)
|
||||
|
||||
case "Search in Docs":
|
||||
response = self._chunks_service.retrieve_relevant(
|
||||
text=message, limit=4, prev_next_chunks=0
|
||||
)
|
||||
|
||||
sources = Source.curate_sources(response)
|
||||
|
||||
yield "\n\n\n".join(
|
||||
f"{index}. **{source.file} (page {source.page})**\n"
|
||||
f" (link: [{source.page_link}]({source.page_link}))\n{source.text}"
|
||||
for index, source in enumerate(sources, start=1)
|
||||
)
|
||||
|
||||
# On initialization and on mode change, this function set the system prompt
|
||||
# to the default prompt based on the mode (and user settings).
|
||||
@staticmethod
|
||||
def _get_default_system_prompt(mode: str) -> str:
|
||||
p = ""
|
||||
match mode:
|
||||
# For query chat mode, obtain default system prompt from settings
|
||||
case "Query Docs":
|
||||
p = settings().ui.default_query_system_prompt
|
||||
# For chat mode, obtain default system prompt from settings
|
||||
case "LLM Chat":
|
||||
p = settings().ui.default_chat_system_prompt
|
||||
# For any other mode, clear the system prompt
|
||||
case _:
|
||||
p = ""
|
||||
return p
|
||||
|
||||
def _set_system_prompt(self, system_prompt_input: str) -> None:
|
||||
logger.info(f"Setting system prompt to: {system_prompt_input}")
|
||||
self._system_prompt = system_prompt_input
|
||||
|
||||
def _set_current_mode(self, mode: str) -> Any:
|
||||
self.mode = mode
|
||||
self._set_system_prompt(self._get_default_system_prompt(mode))
|
||||
|
||||
def _list_ingested_files(self) -> list[list[str]]:
|
||||
files = set()
|
||||
for ingested_document in self._ingest_service.list_ingested():
|
||||
if ingested_document.doc_metadata is None:
|
||||
# Skipping documents without metadata
|
||||
continue
|
||||
file_name = ingested_document.doc_metadata.get(
|
||||
"file_name", "[FILE NAME MISSING]"
|
||||
)
|
||||
files.add(file_name)
|
||||
return [[row] for row in files]
|
||||
|
||||
def _upload_file(self, files: list[str]) -> None:
|
||||
logger.debug("Loading count=%s files", len(files))
|
||||
paths = [Path(file) for file in files]
|
||||
self._ingest_service.bulk_ingest(
|
||||
[(str(path.name), path) for path in paths])
|
||||
|
||||
|
||||
|
||||
import json
|
||||
|
||||
DEFAULT_MODE = MODES[0]
|
||||
@home_router.post("/chat")
|
||||
async def chat_endpoint(request: Request, message: str = Body(...), mode: str = Body(DEFAULT_MODE)):
|
||||
home_instance = request.state.injector.get(Home)
|
||||
history = []
|
||||
print("The message is: ", message)
|
||||
print("The mode is: ", mode)
|
||||
responses = home_instance._chat(message, history, mode)
|
||||
return StreamingResponse(content=responses, media_type='text/event-stream')
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
# text = (
|
||||
# "To run the Celery worker based on the provided context, you can follow these steps: "
|
||||
# "1. First, make sure you have Celery installed in your project."
|
||||
# "2. Create a Celery instance and configure it with your settings."
|
||||
# "3. Define Celery tasks that will be executed by the worker."
|
||||
# "4. Start the Celery worker using the configured Celery instance."
|
||||
# "5. Your Celery worker is now running and ready to process tasks."
|
||||
# )
|
||||
# import time
|
||||
# async def generate_stream():
|
||||
# for i in range(len(text)):
|
||||
# yield text[:i+1] # Sending part of the text in each iteration
|
||||
# time.sleep(0.1) # Simulating some processing time
|
||||
|
||||
# Return the responses as a StreamingResponse
|
||||
# return StreamingResponse(content=responses, media_type="application/json")
|
||||
|
||||
|
@ -14,7 +14,7 @@ from private_gpt.server.ingest.ingest_router import ingest_router
|
||||
from private_gpt.users.api.v1.api import api_router
|
||||
|
||||
from private_gpt.settings.settings import Settings
|
||||
|
||||
from private_gpt.home import home_router
|
||||
logger = logging.getLogger(__name__)
|
||||
|
||||
|
||||
@ -25,28 +25,25 @@ def create_app(root_injector: Injector) -> FastAPI:
|
||||
request.state.injector = root_injector
|
||||
|
||||
app = FastAPI(dependencies=[Depends(bind_injector_to_request)])
|
||||
|
||||
# app.include_router(completions_router)
|
||||
# app.include_router(chat_router)
|
||||
# app.include_router(chunks_router)
|
||||
# app.include_router(ingest_router)
|
||||
# app.include_router(embeddings_router)
|
||||
# app.include_router(health_router)
|
||||
app.include_router(completions_router)
|
||||
app.include_router(chat_router)
|
||||
app.include_router(chunks_router)
|
||||
app.include_router(ingest_router)
|
||||
app.include_router(embeddings_router)
|
||||
app.include_router(health_router)
|
||||
|
||||
app.include_router(api_router)
|
||||
|
||||
|
||||
app.include_router(home_router)
|
||||
settings = root_injector.get(Settings)
|
||||
if settings.server.cors.enabled:
|
||||
logger.debug("Setting up CORS middleware")
|
||||
app.add_middleware(
|
||||
CORSMiddleware,
|
||||
allow_credentials=settings.server.cors.allow_credentials,
|
||||
allow_origins=settings.server.cors.allow_origins,
|
||||
allow_origin_regex=settings.server.cors.allow_origin_regex,
|
||||
allow_methods=settings.server.cors.allow_methods,
|
||||
allow_headers=settings.server.cors.allow_headers,
|
||||
)
|
||||
# if settings.server.cors.enabled/:
|
||||
logger.debug("Setting up CORS middleware")
|
||||
app.add_middleware(
|
||||
CORSMiddleware,
|
||||
allow_credentials=True,
|
||||
allow_origins=["http://localhost:5173", "http://localhost:8001"],
|
||||
allow_methods=["DELETE", "GET", "POST", "PUT", "OPTIONS"],
|
||||
allow_headers=["*"],
|
||||
)
|
||||
|
||||
# if settings.ui.enabled:
|
||||
# logger.debug("Importing the UI module")
|
||||
|
@ -106,3 +106,4 @@ def chat_completion(
|
||||
return to_openai_response(
|
||||
completion.response, completion.sources if body.include_sources else None
|
||||
)
|
||||
|
@ -1,15 +1,17 @@
|
||||
from typing import Literal
|
||||
|
||||
from fastapi import APIRouter, Depends, HTTPException, Request, UploadFile
|
||||
from fastapi import APIRouter, Depends, HTTPException, Request, UploadFile, File
|
||||
from fastapi.responses import JSONResponse
|
||||
from pydantic import BaseModel, Field
|
||||
|
||||
from private_gpt.server.ingest.ingest_service import IngestService
|
||||
from private_gpt.server.ingest.model import IngestedDoc
|
||||
from private_gpt.server.utils.auth import authenticated
|
||||
from private_gpt.constants import UPLOAD_DIR
|
||||
from pathlib import Path
|
||||
|
||||
ingest_router = APIRouter(prefix="/v1", dependencies=[Depends(authenticated)])
|
||||
|
||||
|
||||
class IngestTextBody(BaseModel):
|
||||
file_name: str = Field(examples=["Avatar: The Last Airbender"])
|
||||
text: str = Field(
|
||||
@ -38,7 +40,7 @@ def ingest(request: Request, file: UploadFile) -> IngestResponse:
|
||||
|
||||
|
||||
@ingest_router.post("/ingest/file", tags=["Ingestion"])
|
||||
def ingest_file(request: Request, file: UploadFile) -> IngestResponse:
|
||||
def ingest_file(request: Request, file: UploadFile = File(...)) -> IngestResponse:
|
||||
"""Ingests and processes a file, storing its chunks to be used as context.
|
||||
|
||||
The context obtained from files is later used in
|
||||
@ -54,12 +56,22 @@ def ingest_file(request: Request, file: UploadFile) -> IngestResponse:
|
||||
can be used to filter the context used to create responses in
|
||||
`/chat/completions`, `/completions`, and `/chunks` APIs.
|
||||
"""
|
||||
# try:
|
||||
service = request.state.injector.get(IngestService)
|
||||
if file.filename is None:
|
||||
raise HTTPException(400, "No file name provided")
|
||||
ingested_documents = service.ingest_bin_data(file.filename, file.file)
|
||||
upload_path = Path(f"{UPLOAD_DIR}/{file.filename}")
|
||||
try:
|
||||
with open(upload_path, "wb") as f:
|
||||
f.write(file.file.read())
|
||||
with open(upload_path, "rb") as f:
|
||||
ingested_documents = service.ingest_bin_data(file.filename, f)
|
||||
except Exception as e:
|
||||
return {"message": f"There was an error uploading the file(s)\n {e}"}
|
||||
finally:
|
||||
file.file.close()
|
||||
return IngestResponse(object="list", model="private-gpt", data=ingested_documents)
|
||||
|
||||
|
||||
|
||||
@ingest_router.post("/ingest/text", tags=["Ingestion"])
|
||||
def ingest_text(request: Request, body: IngestTextBody) -> IngestResponse:
|
||||
@ -102,3 +114,14 @@ def delete_ingested(request: Request, doc_id: str) -> None:
|
||||
"""
|
||||
service = request.state.injector.get(IngestService)
|
||||
service.delete(doc_id)
|
||||
|
||||
|
||||
@ingest_router.delete("/ingest", tags=["Ingestion"])
|
||||
def delete_ingested(request: Request, doc_id: str) -> None:
|
||||
"""Delete the specified ingested Document.
|
||||
|
||||
The `doc_id` can be obtained from the `GET /ingest/list` endpoint.
|
||||
The document will be effectively deleted from your storage context.
|
||||
"""
|
||||
service = request.state.injector.get(IngestService)
|
||||
service.delete(doc_id)
|
||||
|
@ -130,3 +130,4 @@ class IngestService:
|
||||
"Deleting the ingested document=%s in the doc and index store", doc_id
|
||||
)
|
||||
self.ingest_component.delete(doc_id)
|
||||
|
||||
|
@ -1,8 +1,9 @@
|
||||
from typing import Any, Literal
|
||||
|
||||
import os
|
||||
from llama_index import Document
|
||||
from pydantic import BaseModel, Field
|
||||
|
||||
from private_gpt.constants import UPLOAD_DIR
|
||||
from pathlib import Path
|
||||
|
||||
class IngestedDoc(BaseModel):
|
||||
object: Literal["ingest.document"]
|
||||
@ -30,3 +31,4 @@ class IngestedDoc(BaseModel):
|
||||
doc_id=document.doc_id,
|
||||
doc_metadata=IngestedDoc.curate_metadata(document.metadata),
|
||||
)
|
||||
|
||||
|
@ -33,6 +33,8 @@ SOURCES_SEPARATOR = "\n\n Sources: \n"
|
||||
|
||||
MODES = ["Query Docs", "Search in Docs", "LLM Chat"]
|
||||
|
||||
|
||||
# generate
|
||||
@singleton
|
||||
class PrivateAdminGptUi:
|
||||
@inject
|
||||
@ -67,11 +69,16 @@ class PrivateAdminGptUi:
|
||||
if completion_gen.sources:
|
||||
full_response += SOURCES_SEPARATOR
|
||||
cur_sources = Source.curate_sources(completion_gen.sources)
|
||||
# sources_text = "\n\n\n".join(
|
||||
# f"{index}. {source.file} (page {source.page}) (page_link {source.page_link})"
|
||||
# for index, source in enumerate(cur_sources, start=1)
|
||||
# )
|
||||
sources_text = "\n\n\n".join(
|
||||
f"{index}. {source.file} (page {source.page})"
|
||||
f'<a href="#" target="_blank" rel="noopener noreferrer">{index}. {source.file} (page {source.page})</a>'
|
||||
for index, source in enumerate(cur_sources, start=1)
|
||||
)
|
||||
full_response += sources_text
|
||||
print(full_response)
|
||||
yield full_response
|
||||
|
||||
def build_history() -> list[ChatMessage]:
|
||||
@ -125,11 +132,10 @@ class PrivateAdminGptUi:
|
||||
)
|
||||
|
||||
sources = Source.curate_sources(response)
|
||||
|
||||
|
||||
yield "\n\n\n".join(
|
||||
f"{index}. **{source.file} "
|
||||
f"(page {source.page})**\n "
|
||||
f"{source.text}"
|
||||
f"{index}. **{source.file} (page {source.page})**\n"
|
||||
f" (link: [{source.page_link}]({source.page_link}))\n{source.text}"
|
||||
for index, source in enumerate(sources, start=1)
|
||||
)
|
||||
|
||||
|
@ -1,10 +1,12 @@
|
||||
from pydantic import BaseModel
|
||||
from private_gpt.server.chunks.chunks_service import Chunk, ChunksService
|
||||
|
||||
from private_gpt.constants import UPLOAD_DIR
|
||||
from pathlib import Path
|
||||
class Source(BaseModel):
|
||||
file: str
|
||||
page: str
|
||||
text: str
|
||||
page_link: str
|
||||
|
||||
class Config:
|
||||
frozen = True
|
||||
@ -18,8 +20,9 @@ class Source(BaseModel):
|
||||
|
||||
file_name = doc_metadata.get("file_name", "-") if doc_metadata else "-"
|
||||
page_label = doc_metadata.get("page_label", "-") if doc_metadata else "-"
|
||||
page_link = str(Path(f"{UPLOAD_DIR}/{file_name}#page={page_label}"))
|
||||
|
||||
source = Source(file=file_name, page=page_label, text=chunk.text)
|
||||
source = Source(file=file_name, page=page_label, text=chunk.text, page_link=page_link)
|
||||
curated_sources.add(source)
|
||||
|
||||
return curated_sources
|
@ -69,7 +69,7 @@ class PrivateGptUi:
|
||||
full_response += SOURCES_SEPARATOR
|
||||
cur_sources = Source.curate_sources(completion_gen.sources)
|
||||
sources_text = "\n\n\n".join(
|
||||
f"{index}. {source.file} (page {source.page})"
|
||||
f"{index}. {source.file} (page {source.page}) (page_link {source.page_link})"
|
||||
for index, source in enumerate(cur_sources, start=1)
|
||||
)
|
||||
full_response += sources_text
|
||||
@ -130,6 +130,7 @@ class PrivateGptUi:
|
||||
yield "\n\n\n".join(
|
||||
f"{index}. **{source.file} "
|
||||
f"(page {source.page})**\n "
|
||||
f"(link {source.page_link})**\n "
|
||||
f"{source.text}"
|
||||
for index, source in enumerate(sources, start=1)
|
||||
)
|
||||
|
@ -1,141 +0,0 @@
|
||||
"""This file should be imported only and only if you want to run the UI locally."""
|
||||
import itertools
|
||||
import logging
|
||||
from collections.abc import Iterable
|
||||
from pathlib import Path
|
||||
from typing import Any
|
||||
|
||||
import gradio as gr # type: ignore
|
||||
from fastapi import FastAPI
|
||||
from gradio.themes.utils.colors import slate # type: ignore
|
||||
from injector import inject, singleton
|
||||
from llama_index.llms import ChatMessage, ChatResponse, MessageRole
|
||||
from pydantic import BaseModel
|
||||
|
||||
from private_gpt.constants import PROJECT_ROOT_PATH
|
||||
from private_gpt.di import global_injector
|
||||
from private_gpt.server.chat.chat_service import ChatService, CompletionGen
|
||||
from private_gpt.server.chunks.chunks_service import Chunk, ChunksService
|
||||
from private_gpt.server.ingest.ingest_service import IngestService
|
||||
from private_gpt.settings.settings import settings
|
||||
from private_gpt.ui.images import logo_svg
|
||||
|
||||
logger = logging.getLogger(__name__)
|
||||
|
||||
THIS_DIRECTORY_RELATIVE = Path(__file__).parent.relative_to(PROJECT_ROOT_PATH)
|
||||
# Should be "private_gpt/ui/avatar-bot.ico"
|
||||
AVATAR_BOT = THIS_DIRECTORY_RELATIVE / "avatar-bot.ico"
|
||||
|
||||
UI_TAB_TITLE = "My Private GPT"
|
||||
|
||||
SOURCES_SEPARATOR = "\n\n Sources: \n"
|
||||
|
||||
MODES = ["Query Docs", "Search in Docs", "LLM Chat"]
|
||||
|
||||
from private_gpt.ui.common import PrivateGpt
|
||||
|
||||
@singleton
|
||||
class UsersUI(PrivateGpt):
|
||||
|
||||
def __init__(
|
||||
self,
|
||||
ingest_service: IngestService,
|
||||
chat_service: ChatService,
|
||||
chunks_service: ChunksService,
|
||||
) -> None:
|
||||
super().__init__(ingest_service, chat_service, chunks_service)
|
||||
|
||||
def _build_ui_blocks(self) -> gr.Blocks:
|
||||
logger.debug("Creating the UI blocks")
|
||||
with gr.Blocks(
|
||||
title=UI_TAB_TITLE,
|
||||
theme=gr.themes.Soft(primary_hue=slate),
|
||||
css=".logo { "
|
||||
"display:flex;"
|
||||
"background-color: #C7BAFF;"
|
||||
"height: 80px;"
|
||||
"border-radius: 8px;"
|
||||
"align-content: center;"
|
||||
"justify-content: center;"
|
||||
"align-items: center;"
|
||||
"}"
|
||||
".logo img { height: 25% }"
|
||||
".contain { display: flex !important; flex-direction: column !important; }"
|
||||
"#component-0, #component-3, #component-10, #component-8 { height: 100% !important; }"
|
||||
"#chatbot { flex-grow: 1 !important; overflow: auto !important;}"
|
||||
"#col { height: calc(100vh - 112px - 16px) !important; }",
|
||||
) as users:
|
||||
# with gr.Row():
|
||||
# gr.HTML(f"<div class='logo'/><img src={logo_svg} alt=PrivateGPT></div")
|
||||
|
||||
with gr.Row(equal_height=False):
|
||||
with gr.Column(scale=3):
|
||||
mode = gr.Radio(
|
||||
MODES,
|
||||
label="Mode",
|
||||
value="Query Docs",
|
||||
)
|
||||
ingested_dataset = gr.List(
|
||||
self._list_ingested_files,
|
||||
headers=["File name"],
|
||||
label="Ingested Files",
|
||||
interactive=False,
|
||||
render=False, # Rendered under the button
|
||||
)
|
||||
ingested_dataset.change(
|
||||
self._list_ingested_files,
|
||||
outputs=ingested_dataset,
|
||||
)
|
||||
ingested_dataset.render()
|
||||
system_prompt_input = gr.Textbox(
|
||||
placeholder=self._system_prompt,
|
||||
label="System Prompt",
|
||||
lines=2,
|
||||
interactive=True,
|
||||
render=False,
|
||||
)
|
||||
# When mode changes, set default system prompt
|
||||
mode.change(
|
||||
self._set_current_mode, inputs=mode, outputs=system_prompt_input
|
||||
)
|
||||
# On blur, set system prompt to use in queries
|
||||
system_prompt_input.blur(
|
||||
self._set_system_prompt,
|
||||
inputs=system_prompt_input,
|
||||
)
|
||||
|
||||
with gr.Column(scale=7, elem_id="col"):
|
||||
_ = gr.ChatInterface(
|
||||
self._chat,
|
||||
chatbot=gr.Chatbot(
|
||||
label=f"LLM: {settings().llm.mode}",
|
||||
show_copy_button=True,
|
||||
elem_id="chatbot",
|
||||
render=False,
|
||||
# avatar_images=(
|
||||
# None,
|
||||
# AVATAR_BOT,
|
||||
# ),
|
||||
),
|
||||
additional_inputs=[mode, system_prompt_input],
|
||||
)
|
||||
return users
|
||||
|
||||
def get_ui_blocks(self) -> gr.Blocks:
|
||||
if self._ui_block is None:
|
||||
self._ui_block = self._build_ui_blocks()
|
||||
return self._ui_block
|
||||
|
||||
def mount_in_app(self, app: FastAPI, path: str) -> None:
|
||||
logger.info("PATH---------------------------->:%s", path)
|
||||
blocks = self.get_ui_blocks()
|
||||
blocks.queue()
|
||||
logger.info("Mounting the regular gradio UI at path=%s", path)
|
||||
gr.mount_gradio_app(app, blocks, path=path)
|
||||
|
||||
if __name__ == "__main__":
|
||||
ui = global_injector.get(UsersUI)
|
||||
_blocks = ui.get_ui_blocks()
|
||||
_blocks.queue()
|
||||
_blocks.launch(debug=False, show_api=False)
|
||||
|
BIN
private_gpt/uploads/Celery.pdf
Normal file
BIN
private_gpt/uploads/Celery.pdf
Normal file
Binary file not shown.
BIN
private_gpt/uploads/DV-2025 Submission Confirmation.pdf
Normal file
BIN
private_gpt/uploads/DV-2025 Submission Confirmation.pdf
Normal file
Binary file not shown.
BIN
private_gpt/uploads/Multimodel LLM.pdf
Normal file
BIN
private_gpt/uploads/Multimodel LLM.pdf
Normal file
Binary file not shown.
BIN
private_gpt/uploads/Redis.pdf
Normal file
BIN
private_gpt/uploads/Redis.pdf
Normal file
Binary file not shown.
BIN
private_gpt/uploads/Resume.pdf
Normal file
BIN
private_gpt/uploads/Resume.pdf
Normal file
Binary file not shown.
@ -54,10 +54,12 @@ def create_token_payload(user: models.User, user_role: models.UserRole) -> dict:
|
||||
"""
|
||||
return {
|
||||
"id": str(user.id),
|
||||
"email": str(user.email),
|
||||
"role": user_role.role.name,
|
||||
"company_id": user_role.company.id if user_role.company else None,
|
||||
}
|
||||
|
||||
|
||||
@router.post("/login", response_model=schemas.TokenSchema)
|
||||
def login_access_token(
|
||||
db: Session = Depends(deps.get_db),
|
||||
@ -97,6 +99,7 @@ def login_access_token(
|
||||
|
||||
token_payload = {
|
||||
"id": str(user.id),
|
||||
"email": str(user.email),
|
||||
"role": role,
|
||||
"company_id": company_id,
|
||||
}
|
||||
|
@ -24,7 +24,7 @@ def list_companies(
|
||||
),
|
||||
) -> List[schemas.Company]:
|
||||
"""
|
||||
List companies
|
||||
Retrieve a list of companies with pagination support.
|
||||
"""
|
||||
companies = crud.company.get_multi(db, skip=skip, limit=limit)
|
||||
return companies
|
||||
|
@ -5,8 +5,9 @@ server:
|
||||
env_name: ${APP_ENV:prod}
|
||||
port: ${PORT:8001}
|
||||
cors:
|
||||
enabled: false
|
||||
allow_origins: ["*"]
|
||||
enabled: true
|
||||
allow_credentials: true
|
||||
allow_origins: ["http://localhost:5173/"]
|
||||
allow_methods: ["*"]
|
||||
allow_headers: ["*"]
|
||||
auth:
|
||||
|
Loading…
Reference in New Issue
Block a user