mirror of
https://github.com/imartinez/privateGPT.git
synced 2025-08-16 06:33:31 +00:00
Merge branch 'zylon-ai:main' into update-ui-include-model-info-#1647
This commit is contained in:
commit
97b8999933
@ -10,5 +10,4 @@ services:
|
||||
environment:
|
||||
PORT: 8080
|
||||
PGPT_PROFILES: docker
|
||||
PGPT_MODE: local
|
||||
|
||||
PGPT_MODE: llamacpp
|
||||
|
@ -8,14 +8,14 @@ The clients are kept up to date automatically, so we encourage you to use the la
|
||||
|
||||
<Cards>
|
||||
<Card
|
||||
title="Node.js/TypeScript"
|
||||
title="Node.js/TypeScript - WIP"
|
||||
icon="fa-brands fa-node"
|
||||
href="https://github.com/imartinez/privateGPT-typescript"
|
||||
/>
|
||||
<Card
|
||||
title="Python"
|
||||
title="Python - Ready!"
|
||||
icon="fa-brands fa-python"
|
||||
href="https://github.com/imartinez/privateGPT-python"
|
||||
href="https://github.com/imartinez/pgpt_python"
|
||||
/>
|
||||
<br />
|
||||
</Cards>
|
||||
@ -24,12 +24,12 @@ The clients are kept up to date automatically, so we encourage you to use the la
|
||||
|
||||
<Cards>
|
||||
<Card
|
||||
title="Java"
|
||||
title="Java - WIP"
|
||||
icon="fa-brands fa-java"
|
||||
href="https://github.com/imartinez/privateGPT-java"
|
||||
/>
|
||||
<Card
|
||||
title="Go"
|
||||
title="Go - WIP"
|
||||
icon="fa-brands fa-golang"
|
||||
href="https://github.com/imartinez/privateGPT-go"
|
||||
/>
|
||||
|
@ -62,6 +62,7 @@ The following ingestion mode exist:
|
||||
* `simple`: historic behavior, ingest one document at a time, sequentially
|
||||
* `batch`: read, parse, and embed multiple documents using batches (batch read, and then batch parse, and then batch embed)
|
||||
* `parallel`: read, parse, and embed multiple documents in parallel. This is the fastest ingestion mode for local setup.
|
||||
* `pipeline`: Alternative to parallel.
|
||||
To change the ingestion mode, you can use the `embedding.ingest_mode` configuration value. The default value is `simple`.
|
||||
|
||||
To configure the number of workers used for parallel or batched ingestion, you can use
|
||||
|
@ -1,4 +1,4 @@
|
||||
{
|
||||
"organization": "privategpt",
|
||||
"version": "0.17.2"
|
||||
"version": "0.19.10"
|
||||
}
|
@ -6,6 +6,7 @@ import multiprocessing.pool
|
||||
import os
|
||||
import threading
|
||||
from pathlib import Path
|
||||
from queue import Queue
|
||||
from typing import Any
|
||||
|
||||
from llama_index.core.data_structs import IndexDict
|
||||
@ -13,12 +14,13 @@ from llama_index.core.embeddings.utils import EmbedType
|
||||
from llama_index.core.indices import VectorStoreIndex, load_index_from_storage
|
||||
from llama_index.core.indices.base import BaseIndex
|
||||
from llama_index.core.ingestion import run_transformations
|
||||
from llama_index.core.schema import Document, TransformComponent
|
||||
from llama_index.core.schema import BaseNode, Document, TransformComponent
|
||||
from llama_index.core.storage import StorageContext
|
||||
|
||||
from private_gpt.components.ingest.ingest_helper import IngestionHelper
|
||||
from private_gpt.paths import local_data_path
|
||||
from private_gpt.settings.settings import Settings
|
||||
from private_gpt.utils.eta import eta
|
||||
|
||||
logger = logging.getLogger(__name__)
|
||||
|
||||
@ -314,6 +316,170 @@ class ParallelizedIngestComponent(BaseIngestComponentWithIndex):
|
||||
self._file_to_documents_work_pool.terminate()
|
||||
|
||||
|
||||
class PipelineIngestComponent(BaseIngestComponentWithIndex):
|
||||
"""Pipeline ingestion - keeping the embedding worker pool as busy as possible.
|
||||
|
||||
This class implements a threaded ingestion pipeline, which comprises two threads
|
||||
and two queues. The primary thread is responsible for reading and parsing files
|
||||
into documents. These documents are then placed into a queue, which is
|
||||
distributed to a pool of worker processes for embedding computation. After
|
||||
embedding, the documents are transferred to another queue where they are
|
||||
accumulated until a threshold is reached. Upon reaching this threshold, the
|
||||
accumulated documents are flushed to the document store, index, and vector
|
||||
store.
|
||||
|
||||
Exception handling ensures robustness against erroneous files. However, in the
|
||||
pipelined design, one error can lead to the discarding of multiple files. Any
|
||||
discarded files will be reported.
|
||||
"""
|
||||
|
||||
NODE_FLUSH_COUNT = 5000 # Save the index every # nodes.
|
||||
|
||||
def __init__(
|
||||
self,
|
||||
storage_context: StorageContext,
|
||||
embed_model: EmbedType,
|
||||
transformations: list[TransformComponent],
|
||||
count_workers: int,
|
||||
*args: Any,
|
||||
**kwargs: Any,
|
||||
) -> None:
|
||||
super().__init__(storage_context, embed_model, transformations, *args, **kwargs)
|
||||
self.count_workers = count_workers
|
||||
assert (
|
||||
len(self.transformations) >= 2
|
||||
), "Embeddings must be in the transformations"
|
||||
assert count_workers > 0, "count_workers must be > 0"
|
||||
self.count_workers = count_workers
|
||||
# We are doing our own multiprocessing
|
||||
# To do not collide with the multiprocessing of huggingface, we disable it
|
||||
os.environ["TOKENIZERS_PARALLELISM"] = "false"
|
||||
|
||||
# doc_q stores parsed files as Document chunks.
|
||||
# Using a shallow queue causes the filesystem parser to block
|
||||
# when it reaches capacity. This ensures it doesn't outpace the
|
||||
# computationally intensive embeddings phase, avoiding unnecessary
|
||||
# memory consumption. The semaphore is used to bound the async worker
|
||||
# embedding computations to cause the doc Q to fill and block.
|
||||
self.doc_semaphore = multiprocessing.Semaphore(
|
||||
self.count_workers
|
||||
) # limit the doc queue to # items.
|
||||
self.doc_q: Queue[tuple[str, str | None, list[Document] | None]] = Queue(20)
|
||||
# node_q stores documents parsed into nodes (embeddings).
|
||||
# Larger queue size so we don't block the embedding workers during a slow
|
||||
# index update.
|
||||
self.node_q: Queue[
|
||||
tuple[str, str | None, list[Document] | None, list[BaseNode] | None]
|
||||
] = Queue(40)
|
||||
threading.Thread(target=self._doc_to_node, daemon=True).start()
|
||||
threading.Thread(target=self._write_nodes, daemon=True).start()
|
||||
|
||||
def _doc_to_node(self) -> None:
|
||||
# Parse documents into nodes
|
||||
with multiprocessing.pool.ThreadPool(processes=self.count_workers) as pool:
|
||||
while True:
|
||||
try:
|
||||
cmd, file_name, documents = self.doc_q.get(
|
||||
block=True
|
||||
) # Documents for a file
|
||||
if cmd == "process":
|
||||
# Push CPU/GPU embedding work to the worker pool
|
||||
# Acquire semaphore to control access to worker pool
|
||||
self.doc_semaphore.acquire()
|
||||
pool.apply_async(
|
||||
self._doc_to_node_worker, (file_name, documents)
|
||||
)
|
||||
elif cmd == "quit":
|
||||
break
|
||||
finally:
|
||||
if cmd != "process":
|
||||
self.doc_q.task_done() # unblock Q joins
|
||||
|
||||
def _doc_to_node_worker(self, file_name: str, documents: list[Document]) -> None:
|
||||
# CPU/GPU intensive work in its own process
|
||||
try:
|
||||
nodes = run_transformations(
|
||||
documents, # type: ignore[arg-type]
|
||||
self.transformations,
|
||||
show_progress=self.show_progress,
|
||||
)
|
||||
self.node_q.put(("process", file_name, documents, nodes))
|
||||
finally:
|
||||
self.doc_semaphore.release()
|
||||
self.doc_q.task_done() # unblock Q joins
|
||||
|
||||
def _save_docs(
|
||||
self, files: list[str], documents: list[Document], nodes: list[BaseNode]
|
||||
) -> None:
|
||||
try:
|
||||
logger.info(
|
||||
f"Saving {len(files)} files ({len(documents)} documents / {len(nodes)} nodes)"
|
||||
)
|
||||
self._index.insert_nodes(nodes)
|
||||
for document in documents:
|
||||
self._index.docstore.set_document_hash(
|
||||
document.get_doc_id(), document.hash
|
||||
)
|
||||
self._save_index()
|
||||
except Exception:
|
||||
# Tell the user so they can investigate these files
|
||||
logger.exception(f"Processing files {files}")
|
||||
finally:
|
||||
# Clearing work, even on exception, maintains a clean state.
|
||||
nodes.clear()
|
||||
documents.clear()
|
||||
files.clear()
|
||||
|
||||
def _write_nodes(self) -> None:
|
||||
# Save nodes to index. I/O intensive.
|
||||
node_stack: list[BaseNode] = []
|
||||
doc_stack: list[Document] = []
|
||||
file_stack: list[str] = []
|
||||
while True:
|
||||
try:
|
||||
cmd, file_name, documents, nodes = self.node_q.get(block=True)
|
||||
if cmd in ("flush", "quit"):
|
||||
if file_stack:
|
||||
self._save_docs(file_stack, doc_stack, node_stack)
|
||||
if cmd == "quit":
|
||||
break
|
||||
elif cmd == "process":
|
||||
node_stack.extend(nodes) # type: ignore[arg-type]
|
||||
doc_stack.extend(documents) # type: ignore[arg-type]
|
||||
file_stack.append(file_name) # type: ignore[arg-type]
|
||||
# Constant saving is heavy on I/O - accumulate to a threshold
|
||||
if len(node_stack) >= self.NODE_FLUSH_COUNT:
|
||||
self._save_docs(file_stack, doc_stack, node_stack)
|
||||
finally:
|
||||
self.node_q.task_done()
|
||||
|
||||
def _flush(self) -> None:
|
||||
self.doc_q.put(("flush", None, None))
|
||||
self.doc_q.join()
|
||||
self.node_q.put(("flush", None, None, None))
|
||||
self.node_q.join()
|
||||
|
||||
def ingest(self, file_name: str, file_data: Path) -> list[Document]:
|
||||
documents = IngestionHelper.transform_file_into_documents(file_name, file_data)
|
||||
self.doc_q.put(("process", file_name, documents))
|
||||
self._flush()
|
||||
return documents
|
||||
|
||||
def bulk_ingest(self, files: list[tuple[str, Path]]) -> list[Document]:
|
||||
docs = []
|
||||
for file_name, file_data in eta(files):
|
||||
try:
|
||||
documents = IngestionHelper.transform_file_into_documents(
|
||||
file_name, file_data
|
||||
)
|
||||
self.doc_q.put(("process", file_name, documents))
|
||||
docs.extend(documents)
|
||||
except Exception:
|
||||
logger.exception(f"Skipping {file_data.name}")
|
||||
self._flush()
|
||||
return docs
|
||||
|
||||
|
||||
def get_ingestion_component(
|
||||
storage_context: StorageContext,
|
||||
embed_model: EmbedType,
|
||||
@ -336,6 +502,13 @@ def get_ingestion_component(
|
||||
transformations=transformations,
|
||||
count_workers=settings.embedding.count_workers,
|
||||
)
|
||||
elif ingest_mode == "pipeline":
|
||||
return PipelineIngestComponent(
|
||||
storage_context=storage_context,
|
||||
embed_model=embed_model,
|
||||
transformations=transformations,
|
||||
count_workers=settings.embedding.count_workers,
|
||||
)
|
||||
else:
|
||||
return SimpleIngestComponent(
|
||||
storage_context=storage_context,
|
||||
|
@ -131,6 +131,7 @@ class LLMComponent:
|
||||
temperature=settings.llm.temperature,
|
||||
context_window=settings.llm.context_window,
|
||||
additional_kwargs=settings_kwargs,
|
||||
request_timeout=ollama_settings.request_timeout,
|
||||
)
|
||||
case "azopenai":
|
||||
try:
|
||||
|
@ -8,6 +8,9 @@ from llama_index.core.chat_engine.types import (
|
||||
from llama_index.core.indices import VectorStoreIndex
|
||||
from llama_index.core.indices.postprocessor import MetadataReplacementPostProcessor
|
||||
from llama_index.core.llms import ChatMessage, MessageRole
|
||||
from llama_index.core.postprocessor import (
|
||||
SimilarityPostprocessor,
|
||||
)
|
||||
from llama_index.core.storage import StorageContext
|
||||
from llama_index.core.types import TokenGen
|
||||
from pydantic import BaseModel
|
||||
@ -20,6 +23,7 @@ from private_gpt.components.vector_store.vector_store_component import (
|
||||
)
|
||||
from private_gpt.open_ai.extensions.context_filter import ContextFilter
|
||||
from private_gpt.server.chunks.chunks_service import Chunk
|
||||
from private_gpt.settings.settings import Settings
|
||||
|
||||
|
||||
class Completion(BaseModel):
|
||||
@ -68,14 +72,18 @@ class ChatEngineInput:
|
||||
|
||||
@singleton
|
||||
class ChatService:
|
||||
settings: Settings
|
||||
|
||||
@inject
|
||||
def __init__(
|
||||
self,
|
||||
settings: Settings,
|
||||
llm_component: LLMComponent,
|
||||
vector_store_component: VectorStoreComponent,
|
||||
embedding_component: EmbeddingComponent,
|
||||
node_store_component: NodeStoreComponent,
|
||||
) -> None:
|
||||
self.settings = settings
|
||||
self.llm_component = llm_component
|
||||
self.embedding_component = embedding_component
|
||||
self.vector_store_component = vector_store_component
|
||||
@ -98,9 +106,12 @@ class ChatService:
|
||||
use_context: bool = False,
|
||||
context_filter: ContextFilter | None = None,
|
||||
) -> BaseChatEngine:
|
||||
settings = self.settings
|
||||
if use_context:
|
||||
vector_index_retriever = self.vector_store_component.get_retriever(
|
||||
index=self.index, context_filter=context_filter
|
||||
index=self.index,
|
||||
context_filter=context_filter,
|
||||
similarity_top_k=self.settings.rag.similarity_top_k,
|
||||
)
|
||||
return ContextChatEngine.from_defaults(
|
||||
system_prompt=system_prompt,
|
||||
@ -108,6 +119,9 @@ class ChatService:
|
||||
llm=self.llm_component.llm, # Takes no effect at the moment
|
||||
node_postprocessors=[
|
||||
MetadataReplacementPostProcessor(target_metadata_key="window"),
|
||||
SimilarityPostprocessor(
|
||||
similarity_cutoff=settings.rag.similarity_value
|
||||
),
|
||||
],
|
||||
)
|
||||
else:
|
||||
|
@ -1,7 +1,7 @@
|
||||
import logging
|
||||
import tempfile
|
||||
from pathlib import Path
|
||||
from typing import AnyStr, BinaryIO
|
||||
from typing import TYPE_CHECKING, AnyStr, BinaryIO
|
||||
|
||||
from injector import inject, singleton
|
||||
from llama_index.core.node_parser import SentenceWindowNodeParser
|
||||
@ -17,6 +17,9 @@ from private_gpt.components.vector_store.vector_store_component import (
|
||||
from private_gpt.server.ingest.model import IngestedDoc
|
||||
from private_gpt.settings.settings import settings
|
||||
|
||||
if TYPE_CHECKING:
|
||||
from llama_index.core.storage.docstore.types import RefDocInfo
|
||||
|
||||
logger = logging.getLogger(__name__)
|
||||
|
||||
|
||||
@ -86,17 +89,15 @@ class IngestService:
|
||||
return [IngestedDoc.from_document(document) for document in documents]
|
||||
|
||||
def list_ingested(self) -> list[IngestedDoc]:
|
||||
ingested_docs = []
|
||||
ingested_docs: list[IngestedDoc] = []
|
||||
try:
|
||||
docstore = self.storage_context.docstore
|
||||
ingested_docs_ids: set[str] = set()
|
||||
ref_docs: dict[str, RefDocInfo] | None = docstore.get_all_ref_doc_info()
|
||||
|
||||
for node in docstore.docs.values():
|
||||
if node.ref_doc_id is not None:
|
||||
ingested_docs_ids.add(node.ref_doc_id)
|
||||
if not ref_docs:
|
||||
return ingested_docs
|
||||
|
||||
for doc_id in ingested_docs_ids:
|
||||
ref_doc_info = docstore.get_ref_doc_info(ref_doc_id=doc_id)
|
||||
for doc_id, ref_doc_info in ref_docs.items():
|
||||
doc_metadata = None
|
||||
if ref_doc_info is not None and ref_doc_info.metadata is not None:
|
||||
doc_metadata = IngestedDoc.curate_metadata(ref_doc_info.metadata)
|
||||
|
@ -155,13 +155,14 @@ class HuggingFaceSettings(BaseModel):
|
||||
|
||||
class EmbeddingSettings(BaseModel):
|
||||
mode: Literal["huggingface", "openai", "azopenai", "sagemaker", "ollama", "mock"]
|
||||
ingest_mode: Literal["simple", "batch", "parallel"] = Field(
|
||||
ingest_mode: Literal["simple", "batch", "parallel", "pipeline"] = Field(
|
||||
"simple",
|
||||
description=(
|
||||
"The ingest mode to use for the embedding engine:\n"
|
||||
"If `simple` - ingest files sequentially and one by one. It is the historic behaviour.\n"
|
||||
"If `batch` - if multiple files, parse all the files in parallel, "
|
||||
"and send them in batch to the embedding model.\n"
|
||||
"In `pipeline` - The Embedding engine is kept as busy as possible\n"
|
||||
"If `parallel` - parse the files in parallel using multiple cores, and embedd them in parallel.\n"
|
||||
"`parallel` is the fastest mode for local setup, as it parallelize IO RW in the index.\n"
|
||||
"For modes that leverage parallelization, you can specify the number of "
|
||||
@ -174,6 +175,7 @@ class EmbeddingSettings(BaseModel):
|
||||
"The number of workers to use for file ingestion.\n"
|
||||
"In `batch` mode, this is the number of workers used to parse the files.\n"
|
||||
"In `parallel` mode, this is the number of workers used to parse the files and embed them.\n"
|
||||
"In `pipeline` mode, this is the number of workers that can perform embeddings.\n"
|
||||
"This is only used if `ingest_mode` is not `simple`.\n"
|
||||
"Do not go too high with this number, as it might cause memory issues. (especially in `parallel` mode)\n"
|
||||
"Do not set it higher than your number of threads of your CPU."
|
||||
@ -239,6 +241,10 @@ class OllamaSettings(BaseModel):
|
||||
1.1,
|
||||
description="Sets how strongly to penalize repetitions. A higher value (e.g., 1.5) will penalize repetitions more strongly, while a lower value (e.g., 0.9) will be more lenient. (Default: 1.1)",
|
||||
)
|
||||
request_timeout: float = Field(
|
||||
120.0,
|
||||
description="Time elapsed until ollama times out the request. Default is 120s. Format is float. ",
|
||||
)
|
||||
|
||||
|
||||
class AzureOpenAISettings(BaseModel):
|
||||
@ -278,6 +284,17 @@ class UISettings(BaseModel):
|
||||
)
|
||||
|
||||
|
||||
class RagSettings(BaseModel):
|
||||
similarity_top_k: int = Field(
|
||||
2,
|
||||
description="This value controls the number of documents returned by the RAG pipeline",
|
||||
)
|
||||
similarity_value: float = Field(
|
||||
None,
|
||||
description="If set, any documents retrieved from the RAG must meet a certain match score. Acceptable values are between 0 and 1.",
|
||||
)
|
||||
|
||||
|
||||
class PostgresSettings(BaseModel):
|
||||
host: str = Field(
|
||||
"localhost",
|
||||
@ -373,6 +390,7 @@ class Settings(BaseModel):
|
||||
azopenai: AzureOpenAISettings
|
||||
vectorstore: VectorstoreSettings
|
||||
nodestore: NodeStoreSettings
|
||||
rag: RagSettings
|
||||
qdrant: QdrantSettings | None = None
|
||||
postgres: PostgresSettings | None = None
|
||||
|
||||
|
122
private_gpt/utils/eta.py
Normal file
122
private_gpt/utils/eta.py
Normal file
@ -0,0 +1,122 @@
|
||||
import datetime
|
||||
import logging
|
||||
import math
|
||||
import time
|
||||
from collections import deque
|
||||
from typing import Any
|
||||
|
||||
logger = logging.getLogger(__name__)
|
||||
|
||||
|
||||
def human_time(*args: Any, **kwargs: Any) -> str:
|
||||
def timedelta_total_seconds(timedelta: datetime.timedelta) -> float:
|
||||
return (
|
||||
timedelta.microseconds
|
||||
+ 0.0
|
||||
+ (timedelta.seconds + timedelta.days * 24 * 3600) * 10**6
|
||||
) / 10**6
|
||||
|
||||
secs = float(timedelta_total_seconds(datetime.timedelta(*args, **kwargs)))
|
||||
# We want (ms) precision below 2 seconds
|
||||
if secs < 2:
|
||||
return f"{secs * 1000}ms"
|
||||
units = [("y", 86400 * 365), ("d", 86400), ("h", 3600), ("m", 60), ("s", 1)]
|
||||
parts = []
|
||||
for unit, mul in units:
|
||||
if secs / mul >= 1 or mul == 1:
|
||||
if mul > 1:
|
||||
n = int(math.floor(secs / mul))
|
||||
secs -= n * mul
|
||||
else:
|
||||
# >2s we drop the (ms) component.
|
||||
n = int(secs)
|
||||
if n:
|
||||
parts.append(f"{n}{unit}")
|
||||
return " ".join(parts)
|
||||
|
||||
|
||||
def eta(iterator: list[Any]) -> Any:
|
||||
"""Report an ETA after 30s and every 60s thereafter."""
|
||||
total = len(iterator)
|
||||
_eta = ETA(total)
|
||||
_eta.needReport(30)
|
||||
for processed, data in enumerate(iterator, start=1):
|
||||
yield data
|
||||
_eta.update(processed)
|
||||
if _eta.needReport(60):
|
||||
logger.info(f"{processed}/{total} - ETA {_eta.human_time()}")
|
||||
|
||||
|
||||
class ETA:
|
||||
"""Predict how long something will take to complete."""
|
||||
|
||||
def __init__(self, total: int):
|
||||
self.total: int = total # Total expected records.
|
||||
self.rate: float = 0.0 # per second
|
||||
self._timing_data: deque[tuple[float, int]] = deque(maxlen=100)
|
||||
self.secondsLeft: float = 0.0
|
||||
self.nexttime: float = 0.0
|
||||
|
||||
def human_time(self) -> str:
|
||||
if self._calc():
|
||||
return f"{human_time(seconds=self.secondsLeft)} @ {int(self.rate * 60)}/min"
|
||||
return "(computing)"
|
||||
|
||||
def update(self, count: int) -> None:
|
||||
# count should be in the range 0 to self.total
|
||||
assert count > 0
|
||||
assert count <= self.total
|
||||
self._timing_data.append((time.time(), count)) # (X,Y) for pearson
|
||||
|
||||
def needReport(self, whenSecs: int) -> bool:
|
||||
now = time.time()
|
||||
if now > self.nexttime:
|
||||
self.nexttime = now + whenSecs
|
||||
return True
|
||||
return False
|
||||
|
||||
def _calc(self) -> bool:
|
||||
# A sample before a prediction. Need two points to compute slope!
|
||||
if len(self._timing_data) < 3:
|
||||
return False
|
||||
|
||||
# http://en.wikipedia.org/wiki/Pearson_product-moment_correlation_coefficient
|
||||
# Calculate means and standard deviations.
|
||||
samples = len(self._timing_data)
|
||||
# column wise sum of the timing tuples to compute their mean.
|
||||
mean_x, mean_y = (
|
||||
sum(i) / samples for i in zip(*self._timing_data, strict=False)
|
||||
)
|
||||
std_x = math.sqrt(
|
||||
sum(pow(i[0] - mean_x, 2) for i in self._timing_data) / (samples - 1)
|
||||
)
|
||||
std_y = math.sqrt(
|
||||
sum(pow(i[1] - mean_y, 2) for i in self._timing_data) / (samples - 1)
|
||||
)
|
||||
|
||||
# Calculate coefficient.
|
||||
sum_xy, sum_sq_v_x, sum_sq_v_y = 0.0, 0.0, 0
|
||||
for x, y in self._timing_data:
|
||||
x -= mean_x
|
||||
y -= mean_y
|
||||
sum_xy += x * y
|
||||
sum_sq_v_x += pow(x, 2)
|
||||
sum_sq_v_y += pow(y, 2)
|
||||
pearson_r = sum_xy / math.sqrt(sum_sq_v_x * sum_sq_v_y)
|
||||
|
||||
# Calculate regression line.
|
||||
# y = mx + b where m is the slope and b is the y-intercept.
|
||||
m = self.rate = pearson_r * (std_y / std_x)
|
||||
y = self.total
|
||||
b = mean_y - m * mean_x
|
||||
x = (y - b) / m
|
||||
|
||||
# Calculate fitted line (transformed/shifted regression line horizontally).
|
||||
fitted_b = self._timing_data[-1][1] - (m * self._timing_data[-1][0])
|
||||
fitted_x = (y - fitted_b) / m
|
||||
_, count = self._timing_data[-1] # adjust last data point progress count
|
||||
adjusted_x = ((fitted_x - x) * (count / self.total)) + x
|
||||
eta_epoch = adjusted_x
|
||||
|
||||
self.secondsLeft = max([eta_epoch - time.time(), 0])
|
||||
return True
|
@ -10,7 +10,7 @@ from private_gpt.settings.settings import settings
|
||||
|
||||
resume_download = True
|
||||
if __name__ == '__main__':
|
||||
parser = argparse.ArgumentParser(prog='Setup: Download models from huggingface')
|
||||
parser = argparse.ArgumentParser(prog='Setup: Download models from Hugging Face')
|
||||
parser.add_argument('--resume', default=True, action=argparse.BooleanOptionalAction, help='Enable/Disable resume_download options to restart the download progress interrupted')
|
||||
args = parser.parse_args()
|
||||
resume_download = args.resume
|
||||
|
@ -2,9 +2,35 @@ import argparse
|
||||
import os
|
||||
import shutil
|
||||
|
||||
from private_gpt.paths import local_data_path
|
||||
from private_gpt.settings.settings import settings
|
||||
|
||||
def wipe():
|
||||
path = "local_data"
|
||||
|
||||
def wipe() -> None:
|
||||
WIPE_MAP = {
|
||||
"simple": wipe_simple, # node store
|
||||
"chroma": wipe_chroma, # vector store
|
||||
"postgres": wipe_postgres, # node, index and vector store
|
||||
}
|
||||
for dbtype in ("nodestore", "vectorstore"):
|
||||
database = getattr(settings(), dbtype).database
|
||||
func = WIPE_MAP.get(database)
|
||||
if func:
|
||||
func(dbtype)
|
||||
else:
|
||||
print(f"Unable to wipe database '{database}' for '{dbtype}'")
|
||||
|
||||
|
||||
def wipe_file(file: str) -> None:
|
||||
if os.path.isfile(file):
|
||||
os.remove(file)
|
||||
print(f" - Deleted {file}")
|
||||
|
||||
|
||||
def wipe_tree(path: str) -> None:
|
||||
if not os.path.exists(path):
|
||||
print(f"Warning: Path not found {path}")
|
||||
return
|
||||
print(f"Wiping {path}...")
|
||||
all_files = os.listdir(path)
|
||||
|
||||
@ -24,6 +50,54 @@ def wipe():
|
||||
continue
|
||||
|
||||
|
||||
def wipe_simple(dbtype: str) -> None:
|
||||
assert dbtype == "nodestore"
|
||||
from llama_index.core.storage.docstore.types import (
|
||||
DEFAULT_PERSIST_FNAME as DOCSTORE,
|
||||
)
|
||||
from llama_index.core.storage.index_store.types import (
|
||||
DEFAULT_PERSIST_FNAME as INDEXSTORE,
|
||||
)
|
||||
|
||||
for store in (DOCSTORE, INDEXSTORE):
|
||||
wipe_file(str((local_data_path / store).absolute()))
|
||||
|
||||
|
||||
def wipe_postgres(dbtype: str) -> None:
|
||||
try:
|
||||
import psycopg2
|
||||
except ImportError as e:
|
||||
raise ImportError("Postgres dependencies not found") from e
|
||||
|
||||
cur = conn = None
|
||||
try:
|
||||
tables = {
|
||||
"nodestore": ["data_docstore", "data_indexstore"],
|
||||
"vectorstore": ["data_embeddings"],
|
||||
}[dbtype]
|
||||
connection = settings().postgres.model_dump(exclude_none=True)
|
||||
schema = connection.pop("schema_name")
|
||||
conn = psycopg2.connect(**connection)
|
||||
cur = conn.cursor()
|
||||
for table in tables:
|
||||
sql = f"DROP TABLE IF EXISTS {schema}.{table}"
|
||||
cur.execute(sql)
|
||||
print(f"Table {schema}.{table} dropped.")
|
||||
conn.commit()
|
||||
except psycopg2.Error as e:
|
||||
print("Error:", e)
|
||||
finally:
|
||||
if cur:
|
||||
cur.close()
|
||||
if conn:
|
||||
conn.close()
|
||||
|
||||
|
||||
def wipe_chroma(dbtype: str):
|
||||
assert dbtype == "vectorstore"
|
||||
wipe_tree(str((local_data_path / "chroma_db").absolute()))
|
||||
|
||||
|
||||
if __name__ == "__main__":
|
||||
commands = {
|
||||
"wipe": wipe,
|
||||
|
@ -1,3 +1,4 @@
|
||||
# poetry install --extras "ui llms-llama-cpp vector-stores-qdrant embeddings-huggingface"
|
||||
server:
|
||||
env_name: ${APP_ENV:local}
|
||||
|
||||
|
@ -14,11 +14,12 @@ ollama:
|
||||
llm_model: mistral
|
||||
embedding_model: nomic-embed-text
|
||||
api_base: http://localhost:11434
|
||||
tfs_z: 1.0 # Tail free sampling is used to reduce the impact of less probable tokens from the output. A higher value (e.g., 2.0) will reduce the impact more, while a value of 1.0 disables this setting.
|
||||
top_k: 40 # Reduces the probability of generating nonsense. A higher value (e.g. 100) will give more diverse answers, while a lower value (e.g. 10) will be more conservative. (Default: 40)
|
||||
top_p: 0.9 # Works together with top-k. A higher value (e.g., 0.95) will lead to more diverse text, while a lower value (e.g., 0.5) will generate more focused and conservative text. (Default: 0.9)
|
||||
repeat_last_n: 64 # Sets how far back for the model to look back to prevent repetition. (Default: 64, 0 = disabled, -1 = num_ctx)
|
||||
repeat_penalty: 1.2 # Sets how strongly to penalize repetitions. A higher value (e.g., 1.5) will penalize repetitions more strongly, while a lower value (e.g., 0.9) will be more lenient. (Default: 1.1)
|
||||
tfs_z: 1.0 # Tail free sampling is used to reduce the impact of less probable tokens from the output. A higher value (e.g., 2.0) will reduce the impact more, while a value of 1.0 disables this setting.
|
||||
top_k: 40 # Reduces the probability of generating nonsense. A higher value (e.g. 100) will give more diverse answers, while a lower value (e.g. 10) will be more conservative. (Default: 40)
|
||||
top_p: 0.9 # Works together with top-k. A higher value (e.g., 0.95) will lead to more diverse text, while a lower value (e.g., 0.5) will generate more focused and conservative text. (Default: 0.9)
|
||||
repeat_last_n: 64 # Sets how far back for the model to look back to prevent repetition. (Default: 64, 0 = disabled, -1 = num_ctx)
|
||||
repeat_penalty: 1.2 # Sets how strongly to penalize repetitions. A higher value (e.g., 1.5) will penalize repetitions more strongly, while a lower value (e.g., 0.9) will be more lenient. (Default: 1.1)
|
||||
request_timeout: 120.0 # Time elapsed until ollama times out the request. Default is 120s. Format is float.
|
||||
|
||||
vectorstore:
|
||||
database: qdrant
|
||||
|
@ -42,6 +42,12 @@ llm:
|
||||
tokenizer: mistralai/Mistral-7B-Instruct-v0.2
|
||||
temperature: 0.1 # The temperature of the model. Increasing the temperature will make the model answer more creatively. A value of 0.1 would be more factual. (Default: 0.1)
|
||||
|
||||
rag:
|
||||
similarity_top_k: 2
|
||||
#This value controls how many "top" documents the RAG returns to use in the context.
|
||||
#similarity_value: 0.45
|
||||
#This value is disabled by default. If you enable this settings, the RAG will only use articles that meet a certain percentage score.
|
||||
|
||||
llamacpp:
|
||||
prompt_style: "mistral"
|
||||
llm_hf_repo_id: TheBloke/Mistral-7B-Instruct-v0.2-GGUF
|
||||
@ -89,6 +95,7 @@ ollama:
|
||||
llm_model: llama2
|
||||
embedding_model: nomic-embed-text
|
||||
api_base: http://localhost:11434
|
||||
request_timeout: 120.0
|
||||
|
||||
azopenai:
|
||||
api_key: ${AZ_OPENAI_API_KEY:}
|
||||
|
Loading…
Reference in New Issue
Block a user