"Refactored main function to take hide_source and mute_stream parameters for controlling output. Added argparse for command-line argument parsing. StreamingStdOutCallbackHandler and source document display are now optional based on user input. Introduced parse_arguments function to handle command-line arguments. Also, updated README.md to reflect these changes."

This commit is contained in:
abhiruka 2023-05-19 23:18:31 +08:00
parent ad64589c8f
commit 9fb7f07e3c
2 changed files with 51 additions and 11 deletions

View File

@ -81,6 +81,29 @@ Note: you could turn off your internet connection, and the script inference woul
Type `exit` to finish the script.
### Script Arguments
The script also supports optional command-line arguments to modify its behavior:
- `--hide-source` or `-S`: Use this flag to disable printing of the source documents used for answers. By default, the source documents are printed.
```shell
python privateGPT.py --hide-source
```
- `--mute-stream` or `-M`: Use this flag to disable LLM standard output streaming response, which by default prints progress to the console.
```shell
python privateGPT.py --mute-stream
```
You can combine these options if needed:
```shell
python privateGPT.py --hide-source --mute-callback
```
# How does it work?
Selecting the right local models and the power of `LangChain` you can run the entire pipeline locally, without any data leaving your environment, and with reasonable performance.

View File

@ -5,6 +5,7 @@ from langchain.callbacks.streaming_stdout import StreamingStdOutCallbackHandler
from langchain.vectorstores import Chroma
from langchain.llms import GPT4All, LlamaCpp
import os
import argparse
load_dotenv()
@ -17,12 +18,13 @@ model_n_ctx = os.environ.get('MODEL_N_CTX')
from constants import CHROMA_SETTINGS
def main():
def main(hide_source=False, mute_stream=False):
embeddings = HuggingFaceEmbeddings(model_name=embeddings_model_name)
db = Chroma(persist_directory=persist_directory, embedding_function=embeddings, client_settings=CHROMA_SETTINGS)
retriever = db.as_retriever()
# activate/deactivate the streaming StdOut callback for LLMs
callbacks = [] if mute_stream else [StreamingStdOutCallbackHandler()]
# Prepare the LLM
callbacks = [StreamingStdOutCallbackHandler()]
match model_type:
case "LlamaCpp":
llm = LlamaCpp(model_path=model_path, n_ctx=model_n_ctx, callbacks=callbacks, verbose=False)
@ -31,7 +33,7 @@ def main():
case _default:
print(f"Model {model_type} not supported!")
exit;
qa = RetrievalQA.from_chain_type(llm=llm, chain_type="stuff", retriever=retriever, return_source_documents=True)
qa = RetrievalQA.from_chain_type(llm=llm, chain_type="stuff", retriever=retriever, return_source_documents= not hide_source)
# Interactive questions and answers
while True:
query = input("\nEnter a query: ")
@ -40,7 +42,7 @@ def main():
# Get the answer from the chain
res = qa(query)
answer, docs = res['result'], res['source_documents']
answer, docs = res['result'], None if hide_source else res['source_documents']
# Print the result
print("\n\n> Question:")
@ -48,10 +50,25 @@ def main():
print("\n> Answer:")
print(answer)
# Print the relevant sources used for the answer
# Print the relevant sources used for the answer, if source is True
if not hide_source and docs:
for document in docs:
print("\n> " + document.metadata["source"] + ":")
print(document.page_content)
def parse_arguments():
parser = argparse.ArgumentParser()
parser.add_argument("--hide-source", "-S", action='store_true',
help='Use this flag to disable printing of source documents used for answers.')
parser.add_argument("--mute-stream", "-M",
action='store_true',
help='Use this flag to disable the streaming StdOut callback for LLMs.')
return parser.parse_args()
if __name__ == "__main__":
main()
# Parse the command line arguments
args = parse_arguments()
main(hide_source=args.hide_source, mute_stream=args.mute_stream)