Add sources to completions APIs and UI (#1206)

This commit is contained in:
Iván Martínez 2023-11-11 21:39:15 +01:00 committed by GitHub
parent dbd99e7b4b
commit a22969ad1f
No known key found for this signature in database
GPG Key ID: 4AEE18F83AFDEB23
7 changed files with 159 additions and 70 deletions

File diff suppressed because one or more lines are too long

View File

@ -5,6 +5,8 @@ from collections.abc import Iterator
from llama_index.llms import ChatResponse, CompletionResponse
from pydantic import BaseModel, Field
from private_gpt.server.chunks.chunks_service import Chunk
class OpenAIDelta(BaseModel):
"""A piece of completion that needs to be concatenated to get the full message."""
@ -27,11 +29,13 @@ class OpenAIChoice(BaseModel):
"""Response from AI.
Either the delta or the message will be present, but never both.
Sources used will be returned in case context retrieval was enabled.
"""
finish_reason: str | None = Field(examples=["stop"])
delta: OpenAIDelta | None = None
message: OpenAIMessage | None = None
sources: list[Chunk] | None = None
index: int = 0
@ -49,7 +53,10 @@ class OpenAICompletion(BaseModel):
@classmethod
def from_text(
cls, text: str | None, finish_reason: str | None = None
cls,
text: str | None,
finish_reason: str | None = None,
sources: list[Chunk] | None = None,
) -> "OpenAICompletion":
return OpenAICompletion(
id=str(uuid.uuid4()),
@ -60,13 +67,18 @@ class OpenAICompletion(BaseModel):
OpenAIChoice(
message=OpenAIMessage(role="assistant", content=text),
finish_reason=finish_reason,
sources=sources,
)
],
)
@classmethod
def json_from_delta(
cls, *, text: str | None, finish_reason: str | None = None
cls,
*,
text: str | None,
finish_reason: str | None = None,
sources: list[Chunk] | None = None,
) -> str:
chunk = OpenAICompletion(
id=str(uuid.uuid4()),
@ -77,6 +89,7 @@ class OpenAICompletion(BaseModel):
OpenAIChoice(
delta=OpenAIDelta(content=text),
finish_reason=finish_reason,
sources=sources,
)
],
)
@ -84,20 +97,25 @@ class OpenAICompletion(BaseModel):
return chunk.model_dump_json()
def to_openai_response(response: str | ChatResponse) -> OpenAICompletion:
def to_openai_response(
response: str | ChatResponse, sources: list[Chunk] | None = None
) -> OpenAICompletion:
if isinstance(response, ChatResponse):
return OpenAICompletion.from_text(response.delta, finish_reason="stop")
else:
return OpenAICompletion.from_text(response, finish_reason="stop")
return OpenAICompletion.from_text(
response, finish_reason="stop", sources=sources
)
def to_openai_sse_stream(
response_generator: Iterator[str | CompletionResponse | ChatResponse],
sources: list[Chunk] | None = None,
) -> Iterator[str]:
for response in response_generator:
if isinstance(response, CompletionResponse | ChatResponse):
yield f"data: {OpenAICompletion.json_from_delta(text=response.delta)}\n\n"
else:
yield f"data: {OpenAICompletion.json_from_delta(text=response)}\n\n"
yield f"data: {OpenAICompletion.json_from_delta(text=response, sources=sources)}\n\n"
yield f"data: {OpenAICompletion.json_from_delta(text=None, finish_reason='stop')}\n\n"
yield "data: [DONE]\n\n"

View File

@ -20,6 +20,7 @@ class ChatBody(BaseModel):
messages: list[OpenAIMessage]
use_context: bool = False
context_filter: ContextFilter | None = None
include_sources: bool = True
stream: bool = False
model_config = {
@ -34,6 +35,7 @@ class ChatBody(BaseModel):
],
"stream": False,
"use_context": True,
"include_sources": True,
"context_filter": {
"docs_ids": ["c202d5e6-7b69-4869-81cc-dd574ee8ee11"]
},
@ -58,6 +60,9 @@ def chat_completion(body: ChatBody) -> OpenAICompletion | StreamingResponse:
Ingested documents IDs can be found using `/ingest/list` endpoint. If you want
all ingested documents to be used, remove `context_filter` altogether.
When using `'include_sources': true`, the API will return the source Chunks used
to create the response, which come from the context provided.
When using `'stream': true`, the API will return data chunks following [OpenAI's
streaming model](https://platform.openai.com/docs/api-reference/chat/streaming):
```
@ -71,12 +76,18 @@ def chat_completion(body: ChatBody) -> OpenAICompletion | StreamingResponse:
ChatMessage(content=m.content, role=MessageRole(m.role)) for m in body.messages
]
if body.stream:
stream = service.stream_chat(
completion_gen = service.stream_chat(
all_messages, body.use_context, body.context_filter
)
return StreamingResponse(
to_openai_sse_stream(stream), media_type="text/event-stream"
to_openai_sse_stream(
completion_gen.response,
completion_gen.sources if body.include_sources else None,
),
media_type="text/event-stream",
)
else:
response = service.chat(all_messages, body.use_context, body.context_filter)
return to_openai_response(response)
completion = service.chat(all_messages, body.use_context, body.context_filter)
return to_openai_response(
completion.response, completion.sources if body.include_sources else None
)

View File

@ -1,13 +1,14 @@
from collections.abc import Sequence
from typing import TYPE_CHECKING, Any
from injector import inject, singleton
from llama_index import ServiceContext, StorageContext, VectorStoreIndex
from llama_index.chat_engine import ContextChatEngine
from llama_index.chat_engine.types import (
BaseChatEngine,
)
from llama_index.indices.postprocessor import MetadataReplacementPostProcessor
from llama_index.llm_predictor.utils import stream_chat_response_to_tokens
from llama_index.llms import ChatMessage
from llama_index.types import TokenGen
from pydantic import BaseModel
from private_gpt.components.embedding.embedding_component import EmbeddingComponent
from private_gpt.components.llm.llm_component import LLMComponent
@ -16,12 +17,17 @@ from private_gpt.components.vector_store.vector_store_component import (
VectorStoreComponent,
)
from private_gpt.open_ai.extensions.context_filter import ContextFilter
from private_gpt.server.chunks.chunks_service import Chunk
if TYPE_CHECKING:
from llama_index.chat_engine.types import (
AgentChatResponse,
StreamingAgentChatResponse,
)
class Completion(BaseModel):
response: str
sources: list[Chunk] | None = None
class CompletionGen(BaseModel):
response: TokenGen
sources: list[Chunk] | None = None
@singleton
@ -51,66 +57,64 @@ class ChatService:
show_progress=True,
)
def _chat_with_contex(
self,
message: str,
context_filter: ContextFilter | None = None,
chat_history: Sequence[ChatMessage] | None = None,
streaming: bool = False,
) -> Any:
def _chat_engine(
self, context_filter: ContextFilter | None = None
) -> BaseChatEngine:
vector_index_retriever = self.vector_store_component.get_retriever(
index=self.index, context_filter=context_filter
)
chat_engine = ContextChatEngine.from_defaults(
return ContextChatEngine.from_defaults(
retriever=vector_index_retriever,
service_context=self.service_context,
node_postprocessors=[
MetadataReplacementPostProcessor(target_metadata_key="window"),
],
)
if streaming:
result = chat_engine.stream_chat(message, chat_history)
else:
result = chat_engine.chat(message, chat_history)
return result
def stream_chat(
self,
messages: list[ChatMessage],
use_context: bool = False,
context_filter: ContextFilter | None = None,
) -> TokenGen:
) -> CompletionGen:
if use_context:
last_message = messages[-1].content
response: StreamingAgentChatResponse = self._chat_with_contex(
chat_engine = self._chat_engine(context_filter=context_filter)
streaming_response = chat_engine.stream_chat(
message=last_message if last_message is not None else "",
chat_history=messages[:-1],
context_filter=context_filter,
streaming=True,
)
response_gen = response.response_gen
sources = [
Chunk.from_node(node) for node in streaming_response.source_nodes
]
completion_gen = CompletionGen(
response=streaming_response.response_gen, sources=sources
)
else:
stream = self.llm_service.llm.stream_chat(messages)
response_gen = stream_chat_response_to_tokens(stream)
return response_gen
completion_gen = CompletionGen(
response=stream_chat_response_to_tokens(stream)
)
return completion_gen
def chat(
self,
messages: list[ChatMessage],
use_context: bool = False,
context_filter: ContextFilter | None = None,
) -> str:
) -> Completion:
if use_context:
last_message = messages[-1].content
wrapped_response: AgentChatResponse = self._chat_with_contex(
chat_engine = self._chat_engine(context_filter=context_filter)
wrapped_response = chat_engine.chat(
message=last_message if last_message is not None else "",
chat_history=messages[:-1],
context_filter=context_filter,
streaming=False,
)
response = wrapped_response.response
sources = [Chunk.from_node(node) for node in wrapped_response.source_nodes]
completion = Completion(response=wrapped_response.response, sources=sources)
else:
chat_response = self.llm_service.llm.chat(messages)
response_content = chat_response.message.content
response = response_content if response_content is not None else ""
return response
completion = Completion(response=response)
return completion

View File

@ -24,17 +24,33 @@ class Chunk(BaseModel):
document: IngestedDoc
text: str = Field(examples=["Outbound sales increased 20%, driven by new leads."])
previous_texts: list[str] | None = Field(
examples=[["SALES REPORT 2023", "Inbound didn't show major changes."]]
default=None,
examples=[["SALES REPORT 2023", "Inbound didn't show major changes."]],
)
next_texts: list[str] | None = Field(
default=None,
examples=[
[
"New leads came from Google Ads campaign.",
"The campaign was run by the Marketing Department",
]
]
],
)
@classmethod
def from_node(cls: type["Chunk"], node: NodeWithScore) -> "Chunk":
doc_id = node.node.ref_doc_id if node.node.ref_doc_id is not None else "-"
return cls(
object="context.chunk",
score=node.score or 0.0,
document=IngestedDoc(
object="ingest.document",
doc_id=doc_id,
doc_metadata=node.metadata,
),
text=node.get_content(),
)
@singleton
class ChunksService:
@ -98,22 +114,11 @@ class ChunksService:
retrieved_nodes = []
for node in nodes:
doc_id = node.node.ref_doc_id if node.node.ref_doc_id is not None else "-"
retrieved_nodes.append(
Chunk(
object="context.chunk",
score=node.score or 0.0,
document=IngestedDoc(
object="ingest.document",
doc_id=doc_id,
doc_metadata=node.metadata,
),
text=node.get_content(),
previous_texts=self._get_sibling_nodes_text(
node, prev_next_chunks, False
),
next_texts=self._get_sibling_nodes_text(node, prev_next_chunks),
)
chunk = Chunk.from_node(node)
chunk.previous_texts = self._get_sibling_nodes_text(
node, prev_next_chunks, False
)
chunk.next_texts = self._get_sibling_nodes_text(node, prev_next_chunks)
retrieved_nodes.append(chunk)
return retrieved_nodes

View File

@ -16,6 +16,7 @@ class CompletionsBody(BaseModel):
prompt: str
use_context: bool = False
context_filter: ContextFilter | None = None
include_sources: bool = True
stream: bool = False
model_config = {
@ -25,6 +26,7 @@ class CompletionsBody(BaseModel):
"prompt": "How do you fry an egg?",
"stream": False,
"use_context": False,
"include_sources": False,
}
]
}
@ -48,6 +50,9 @@ def prompt_completion(body: CompletionsBody) -> OpenAICompletion | StreamingResp
can be found using `/ingest/list` endpoint. If you want all ingested documents to
be used, remove `context_filter` altogether.
When using `'include_sources': true`, the API will return the source Chunks used
to create the response, which come from the context provided.
When using `'stream': true`, the API will return data chunks following [OpenAI's
streaming model](https://platform.openai.com/docs/api-reference/chat/streaming):
```
@ -61,6 +66,7 @@ def prompt_completion(body: CompletionsBody) -> OpenAICompletion | StreamingResp
messages=[message],
use_context=body.use_context,
stream=body.stream,
include_sources=body.include_sources,
context_filter=body.context_filter,
)
return chat_completion(chat_body)

View File

@ -11,7 +11,7 @@ from gradio.themes.utils.colors import slate # type: ignore
from llama_index.llms import ChatMessage, ChatResponse, MessageRole
from private_gpt.di import root_injector
from private_gpt.server.chat.chat_service import ChatService
from private_gpt.server.chat.chat_service import ChatService, CompletionGen
from private_gpt.server.chunks.chunks_service import ChunksService
from private_gpt.server.ingest.ingest_service import IngestService
from private_gpt.settings.settings import settings
@ -33,8 +33,9 @@ class PrivateGptUi:
self._ui_block = None
def _chat(self, message: str, history: list[list[str]], mode: str, *_: Any) -> Any:
def yield_deltas(stream: Iterable[ChatResponse | str]) -> Iterable[str]:
def yield_deltas(completion_gen: CompletionGen) -> Iterable[str]:
full_response: str = ""
stream = completion_gen.response
for delta in stream:
if isinstance(delta, str):
full_response += str(delta)
@ -42,6 +43,26 @@ class PrivateGptUi:
full_response += delta.delta or ""
yield full_response
if completion_gen.sources:
full_response += "\n\n Sources: \n"
sources = (
{
"file": chunk.document.doc_metadata["file_name"]
if chunk.document.doc_metadata
else "",
"page": chunk.document.doc_metadata["page_label"]
if chunk.document.doc_metadata
else "",
}
for chunk in completion_gen.sources
)
sources_text = "\n\n\n".join(
f"{index}. {source['file']} (page {source['page']})"
for index, source in enumerate(sources, start=1)
)
full_response += sources_text
yield full_response
def build_history() -> list[ChatMessage]:
history_messages: list[ChatMessage] = list(
itertools.chain(