mirror of
https://github.com/imartinez/privateGPT.git
synced 2025-09-18 16:34:33 +00:00
Ingestion Speedup Multiple strategy (#1309)
This commit is contained in:
@@ -3,7 +3,8 @@ from typing import Literal
|
||||
from fastapi import APIRouter, Depends, HTTPException, Request, UploadFile
|
||||
from pydantic import BaseModel
|
||||
|
||||
from private_gpt.server.ingest.ingest_service import IngestedDoc, IngestService
|
||||
from private_gpt.server.ingest.ingest_service import IngestService
|
||||
from private_gpt.server.ingest.model import IngestedDoc
|
||||
from private_gpt.server.utils.auth import authenticated
|
||||
|
||||
ingest_router = APIRouter(prefix="/v1", dependencies=[Depends(authenticated)])
|
||||
@@ -35,7 +36,7 @@ def ingest(request: Request, file: UploadFile) -> IngestResponse:
|
||||
service = request.state.injector.get(IngestService)
|
||||
if file.filename is None:
|
||||
raise HTTPException(400, "No file name provided")
|
||||
ingested_documents = service.ingest(file.filename, file.file.read())
|
||||
ingested_documents = service.ingest_bin_data(file.filename, file.file)
|
||||
return IngestResponse(object="list", model="private-gpt", data=ingested_documents)
|
||||
|
||||
|
||||
|
@@ -1,64 +1,27 @@
|
||||
import logging
|
||||
import tempfile
|
||||
from pathlib import Path
|
||||
from typing import TYPE_CHECKING, Any, AnyStr, Literal
|
||||
from typing import BinaryIO
|
||||
|
||||
from injector import inject, singleton
|
||||
from llama_index import (
|
||||
Document,
|
||||
ServiceContext,
|
||||
StorageContext,
|
||||
VectorStoreIndex,
|
||||
load_index_from_storage,
|
||||
)
|
||||
from llama_index.node_parser import SentenceWindowNodeParser
|
||||
from llama_index.readers import JSONReader, StringIterableReader
|
||||
from llama_index.readers.file.base import DEFAULT_FILE_READER_CLS
|
||||
from pydantic import BaseModel, Field
|
||||
|
||||
from private_gpt.components.embedding.embedding_component import EmbeddingComponent
|
||||
from private_gpt.components.ingest.ingest_component import SimpleIngestComponent
|
||||
from private_gpt.components.llm.llm_component import LLMComponent
|
||||
from private_gpt.components.node_store.node_store_component import NodeStoreComponent
|
||||
from private_gpt.components.vector_store.vector_store_component import (
|
||||
VectorStoreComponent,
|
||||
)
|
||||
from private_gpt.paths import local_data_path
|
||||
|
||||
if TYPE_CHECKING:
|
||||
from llama_index.readers.base import BaseReader
|
||||
|
||||
# Patching the default file reader to support other file types
|
||||
FILE_READER_CLS = DEFAULT_FILE_READER_CLS.copy()
|
||||
FILE_READER_CLS.update(
|
||||
{
|
||||
".json": JSONReader,
|
||||
}
|
||||
)
|
||||
from private_gpt.server.ingest.model import IngestedDoc
|
||||
|
||||
logger = logging.getLogger(__name__)
|
||||
|
||||
|
||||
class IngestedDoc(BaseModel):
|
||||
object: Literal["ingest.document"]
|
||||
doc_id: str = Field(examples=["c202d5e6-7b69-4869-81cc-dd574ee8ee11"])
|
||||
doc_metadata: dict[str, Any] | None = Field(
|
||||
examples=[
|
||||
{
|
||||
"page_label": "2",
|
||||
"file_name": "Sales Report Q3 2023.pdf",
|
||||
}
|
||||
]
|
||||
)
|
||||
|
||||
@staticmethod
|
||||
def curate_metadata(metadata: dict[str, Any]) -> dict[str, Any]:
|
||||
"""Remove unwanted metadata keys."""
|
||||
metadata.pop("doc_id", None)
|
||||
metadata.pop("window", None)
|
||||
metadata.pop("original_text", None)
|
||||
return metadata
|
||||
|
||||
|
||||
@singleton
|
||||
class IngestService:
|
||||
@inject
|
||||
@@ -75,99 +38,50 @@ class IngestService:
|
||||
docstore=node_store_component.doc_store,
|
||||
index_store=node_store_component.index_store,
|
||||
)
|
||||
node_parser = SentenceWindowNodeParser.from_defaults()
|
||||
self.ingest_service_context = ServiceContext.from_defaults(
|
||||
llm=self.llm_service.llm,
|
||||
embed_model=embedding_component.embedding_model,
|
||||
node_parser=SentenceWindowNodeParser.from_defaults(),
|
||||
node_parser=node_parser,
|
||||
# Embeddings done early in the pipeline of node transformations, right
|
||||
# after the node parsing
|
||||
transformations=[node_parser, embedding_component.embedding_model],
|
||||
)
|
||||
|
||||
def ingest(self, file_name: str, file_data: AnyStr | Path) -> list[IngestedDoc]:
|
||||
self.ingest_component = SimpleIngestComponent(
|
||||
self.storage_context, self.ingest_service_context
|
||||
)
|
||||
|
||||
def ingest(self, file_name: str, file_data: Path) -> list[IngestedDoc]:
|
||||
logger.info("Ingesting file_name=%s", file_name)
|
||||
extension = Path(file_name).suffix
|
||||
reader_cls = FILE_READER_CLS.get(extension)
|
||||
documents: list[Document]
|
||||
if reader_cls is None:
|
||||
logger.debug(
|
||||
"No reader found for extension=%s, using default string reader",
|
||||
extension,
|
||||
)
|
||||
# Read as a plain text
|
||||
string_reader = StringIterableReader()
|
||||
if isinstance(file_data, Path):
|
||||
text = file_data.read_text()
|
||||
documents = string_reader.load_data([text])
|
||||
elif isinstance(file_data, bytes):
|
||||
documents = string_reader.load_data([file_data.decode("utf-8")])
|
||||
elif isinstance(file_data, str):
|
||||
documents = string_reader.load_data([file_data])
|
||||
else:
|
||||
raise ValueError(f"Unsupported data type {type(file_data)}")
|
||||
else:
|
||||
logger.debug("Specific reader found for extension=%s", extension)
|
||||
reader: BaseReader = reader_cls()
|
||||
if isinstance(file_data, Path):
|
||||
# Already a path, nothing to do
|
||||
documents = reader.load_data(file_data)
|
||||
else:
|
||||
# llama-index mainly supports reading from files, so
|
||||
# we have to create a tmp file to read for it to work
|
||||
# delete=False to avoid a Windows 11 permission error.
|
||||
with tempfile.NamedTemporaryFile(delete=False) as tmp:
|
||||
try:
|
||||
path_to_tmp = Path(tmp.name)
|
||||
if isinstance(file_data, bytes):
|
||||
path_to_tmp.write_bytes(file_data)
|
||||
else:
|
||||
path_to_tmp.write_text(str(file_data))
|
||||
documents = reader.load_data(path_to_tmp)
|
||||
finally:
|
||||
tmp.close()
|
||||
path_to_tmp.unlink()
|
||||
logger.info(
|
||||
"Transformed file=%s into count=%s documents", file_name, len(documents)
|
||||
)
|
||||
for document in documents:
|
||||
document.metadata["file_name"] = file_name
|
||||
return self._save_docs(documents)
|
||||
documents = self.ingest_component.ingest(file_name, file_data)
|
||||
return [IngestedDoc.from_document(document) for document in documents]
|
||||
|
||||
def _save_docs(self, documents: list[Document]) -> list[IngestedDoc]:
|
||||
for document in documents:
|
||||
document.metadata["doc_id"] = document.doc_id
|
||||
# We don't want the Embeddings search to receive this metadata
|
||||
document.excluded_embed_metadata_keys = ["doc_id"]
|
||||
# We don't want the LLM to receive these metadata in the context
|
||||
document.excluded_llm_metadata_keys = ["file_name", "doc_id", "page_label"]
|
||||
def ingest_bin_data(
|
||||
self, file_name: str, raw_file_data: BinaryIO
|
||||
) -> list[IngestedDoc]:
|
||||
logger.debug("Ingesting binary data with file_name=%s", file_name)
|
||||
file_data = raw_file_data.read()
|
||||
logger.debug("Got file data of size=%s to ingest", len(file_data))
|
||||
# llama-index mainly supports reading from files, so
|
||||
# we have to create a tmp file to read for it to work
|
||||
# delete=False to avoid a Windows 11 permission error.
|
||||
with tempfile.NamedTemporaryFile(delete=False) as tmp:
|
||||
try:
|
||||
path_to_tmp = Path(tmp.name)
|
||||
if isinstance(file_data, bytes):
|
||||
path_to_tmp.write_bytes(file_data)
|
||||
else:
|
||||
path_to_tmp.write_text(str(file_data))
|
||||
return self.ingest(file_name, path_to_tmp)
|
||||
finally:
|
||||
tmp.close()
|
||||
path_to_tmp.unlink()
|
||||
|
||||
try:
|
||||
# Load the index from storage and insert new documents,
|
||||
index = load_index_from_storage(
|
||||
storage_context=self.storage_context,
|
||||
service_context=self.ingest_service_context,
|
||||
store_nodes_override=True, # Force store nodes in index and document stores
|
||||
show_progress=True,
|
||||
)
|
||||
for doc in documents:
|
||||
index.insert(doc)
|
||||
except ValueError:
|
||||
# Or create a new one if there is none
|
||||
VectorStoreIndex.from_documents(
|
||||
documents,
|
||||
storage_context=self.storage_context,
|
||||
service_context=self.ingest_service_context,
|
||||
store_nodes_override=True, # Force store nodes in index and document stores
|
||||
show_progress=True,
|
||||
)
|
||||
|
||||
# persist the index and nodes
|
||||
self.storage_context.persist(persist_dir=local_data_path)
|
||||
return [
|
||||
IngestedDoc(
|
||||
object="ingest.document",
|
||||
doc_id=document.doc_id,
|
||||
doc_metadata=IngestedDoc.curate_metadata(document.metadata),
|
||||
)
|
||||
for document in documents
|
||||
]
|
||||
def bulk_ingest(self, files: list[tuple[str, Path]]) -> list[IngestedDoc]:
|
||||
logger.info("Ingesting file_names=%s", [f[0] for f in files])
|
||||
documents = self.ingest_component.bulk_ingest(files)
|
||||
return [IngestedDoc.from_document(document) for document in documents]
|
||||
|
||||
def list_ingested(self) -> list[IngestedDoc]:
|
||||
ingested_docs = []
|
||||
@@ -205,17 +119,4 @@ class IngestService:
|
||||
logger.info(
|
||||
"Deleting the ingested document=%s in the doc and index store", doc_id
|
||||
)
|
||||
|
||||
# Load the index with store_nodes_override=True to be able to delete them
|
||||
index = load_index_from_storage(
|
||||
storage_context=self.storage_context,
|
||||
service_context=self.ingest_service_context,
|
||||
store_nodes_override=True, # Force store nodes in index and document stores
|
||||
show_progress=True,
|
||||
)
|
||||
|
||||
# Delete the document from the index
|
||||
index.delete_ref_doc(doc_id, delete_from_docstore=True)
|
||||
|
||||
# Save the index
|
||||
self.storage_context.persist(persist_dir=local_data_path)
|
||||
self.ingest_component.delete(doc_id)
|
||||
|
32
private_gpt/server/ingest/model.py
Normal file
32
private_gpt/server/ingest/model.py
Normal file
@@ -0,0 +1,32 @@
|
||||
from typing import Any, Literal
|
||||
|
||||
from llama_index import Document
|
||||
from pydantic import BaseModel, Field
|
||||
|
||||
|
||||
class IngestedDoc(BaseModel):
|
||||
object: Literal["ingest.document"]
|
||||
doc_id: str = Field(examples=["c202d5e6-7b69-4869-81cc-dd574ee8ee11"])
|
||||
doc_metadata: dict[str, Any] | None = Field(
|
||||
examples=[
|
||||
{
|
||||
"page_label": "2",
|
||||
"file_name": "Sales Report Q3 2023.pdf",
|
||||
}
|
||||
]
|
||||
)
|
||||
|
||||
@staticmethod
|
||||
def curate_metadata(metadata: dict[str, Any]) -> dict[str, Any]:
|
||||
"""Remove unwanted metadata keys."""
|
||||
for key in ["doc_id", "window", "original_text"]:
|
||||
metadata.pop(key, None)
|
||||
return metadata
|
||||
|
||||
@staticmethod
|
||||
def from_document(document: Document) -> "IngestedDoc":
|
||||
return IngestedDoc(
|
||||
object="ingest.document",
|
||||
doc_id=document.doc_id,
|
||||
doc_metadata=IngestedDoc.curate_metadata(document.metadata),
|
||||
)
|
Reference in New Issue
Block a user