mirror of
https://github.com/imartinez/privateGPT.git
synced 2025-07-06 12:07:50 +00:00
ingest unlimited number of documents
This commit is contained in:
parent
271673ffcc
commit
d0aa57178a
49
ingest.py
49
ingest.py
@ -1,35 +1,62 @@
|
|||||||
import os
|
import os
|
||||||
|
import glob
|
||||||
|
from typing import List
|
||||||
from dotenv import load_dotenv
|
from dotenv import load_dotenv
|
||||||
|
|
||||||
from langchain.document_loaders import TextLoader, PDFMinerLoader, CSVLoader
|
from langchain.document_loaders import TextLoader, PDFMinerLoader, CSVLoader
|
||||||
from langchain.text_splitter import RecursiveCharacterTextSplitter
|
from langchain.text_splitter import RecursiveCharacterTextSplitter
|
||||||
from langchain.vectorstores import Chroma
|
from langchain.vectorstores import Chroma
|
||||||
from langchain.embeddings import LlamaCppEmbeddings
|
from langchain.embeddings import LlamaCppEmbeddings
|
||||||
|
from langchain.docstore.document import Document
|
||||||
from constants import CHROMA_SETTINGS
|
from constants import CHROMA_SETTINGS
|
||||||
|
|
||||||
|
|
||||||
load_dotenv()
|
load_dotenv()
|
||||||
|
|
||||||
|
|
||||||
|
def load_single_document(file_path: str) -> Document:
|
||||||
|
# Loads a single document from a file path
|
||||||
|
if file_path.endswith(".txt"):
|
||||||
|
loader = TextLoader(file_path, encoding="utf8")
|
||||||
|
elif file_path.endswith(".pdf"):
|
||||||
|
loader = PDFMinerLoader(file_path)
|
||||||
|
elif file_path.endswith(".csv"):
|
||||||
|
loader = CSVLoader(file_path)
|
||||||
|
return loader.load()[0]
|
||||||
|
|
||||||
|
|
||||||
|
def load_documents(source_dir: str) -> List[Document]:
|
||||||
|
# Loads all documents from source documents directory
|
||||||
|
txt_files = glob.glob(os.path.join(source_dir, "**/*.txt"), recursive=True)
|
||||||
|
pdf_files = glob.glob(os.path.join(source_dir, "**/*.pdf"), recursive=True)
|
||||||
|
csv_files = glob.glob(os.path.join(source_dir, "**/*.csv"), recursive=True)
|
||||||
|
all_files = txt_files + pdf_files + csv_files
|
||||||
|
return [load_single_document(file_path) for file_path in all_files]
|
||||||
|
|
||||||
|
|
||||||
def main():
|
def main():
|
||||||
llama_embeddings_model = os.environ.get('LLAMA_EMBEDDINGS_MODEL')
|
# Load environment variables
|
||||||
persist_directory = os.environ.get('PERSIST_DIRECTORY')
|
persist_directory = os.environ.get('PERSIST_DIRECTORY')
|
||||||
|
source_directory = os.environ.get('SOURCE_DIRECTORY', 'source_documents')
|
||||||
|
llama_embeddings_model = os.environ.get('LLAMA_EMBEDDINGS_MODEL')
|
||||||
model_n_ctx = os.environ.get('MODEL_N_CTX')
|
model_n_ctx = os.environ.get('MODEL_N_CTX')
|
||||||
# Load document and split in chunks
|
|
||||||
for root, dirs, files in os.walk("source_documents"):
|
# Load documents and split in chunks
|
||||||
for file in files:
|
print(f"Loading documents from {source_directory}")
|
||||||
if file.endswith(".txt"):
|
documents = load_documents(source_directory)
|
||||||
loader = TextLoader(os.path.join(root, file), encoding="utf8")
|
|
||||||
elif file.endswith(".pdf"):
|
|
||||||
loader = PDFMinerLoader(os.path.join(root, file))
|
|
||||||
elif file.endswith(".csv"):
|
|
||||||
loader = CSVLoader(os.path.join(root, file))
|
|
||||||
documents = loader.load()
|
|
||||||
text_splitter = RecursiveCharacterTextSplitter(chunk_size=500, chunk_overlap=50)
|
text_splitter = RecursiveCharacterTextSplitter(chunk_size=500, chunk_overlap=50)
|
||||||
texts = text_splitter.split_documents(documents)
|
texts = text_splitter.split_documents(documents)
|
||||||
|
print(f"Loaded {len(documents)} documents from {source_directory}")
|
||||||
|
print(f"Split into {len(texts)} chunks of text (max. 500 tokens each)")
|
||||||
|
|
||||||
# Create embeddings
|
# Create embeddings
|
||||||
llama = LlamaCppEmbeddings(model_path=llama_embeddings_model, n_ctx=model_n_ctx)
|
llama = LlamaCppEmbeddings(model_path=llama_embeddings_model, n_ctx=model_n_ctx)
|
||||||
|
|
||||||
# Create and store locally vectorstore
|
# Create and store locally vectorstore
|
||||||
db = Chroma.from_documents(texts, llama, persist_directory=persist_directory, client_settings=CHROMA_SETTINGS)
|
db = Chroma.from_documents(texts, llama, persist_directory=persist_directory, client_settings=CHROMA_SETTINGS)
|
||||||
db.persist()
|
db.persist()
|
||||||
db = None
|
db = None
|
||||||
|
|
||||||
|
|
||||||
if __name__ == "__main__":
|
if __name__ == "__main__":
|
||||||
main()
|
main()
|
||||||
|
Loading…
Reference in New Issue
Block a user