Merge pull request #1 from zylon-ai/main

Update from origin main
This commit is contained in:
jcbonnet-fwd 2024-05-02 19:42:24 +02:00 committed by GitHub
commit fab9699777
No known key found for this signature in database
GPG Key ID: B5690EEEBB952194
10 changed files with 96 additions and 75 deletions

View File

@ -33,7 +33,8 @@ ENV PORT=8080
EXPOSE 8080
# Prepare a non-root user
RUN adduser --system worker
RUN adduser --group worker
RUN adduser --system --ingroup worker worker
WORKDIR /home/worker/app
RUN mkdir local_data; chown worker local_data

View File

@ -5,8 +5,8 @@ It is important that you review the Main Concepts before you start the installat
* Clone PrivateGPT repository, and navigate to it:
```bash
git clone https://github.com/imartinez/privateGPT
cd privateGPT
git clone https://github.com/zylon-ai/private-gpt
cd private-gpt
```
* Install Python `3.11` (*if you do not have it already*). Ideally through a python version manager like `pyenv`.

91
poetry.lock generated
View File

@ -1,4 +1,4 @@
# This file is automatically @generated by Poetry 1.8.2 and should not be changed by hand.
# This file is automatically @generated by Poetry 1.7.1 and should not be changed by hand.
[[package]]
name = "aiofiles"
@ -515,7 +515,7 @@ files = [
name = "cffi"
version = "1.16.0"
description = "Foreign Function Interface for Python calling C code."
optional = true
optional = false
python-versions = ">=3.8"
files = [
{file = "cffi-1.16.0-cp310-cp310-macosx_10_9_x86_64.whl", hash = "sha256:6b3d6606d369fc1da4fd8c357d026317fbb9c9b75d36dc16e90e84c26854b088"},
@ -934,57 +934,42 @@ toml = ["tomli"]
[[package]]
name = "cryptography"
version = "42.0.5"
version = "3.4.8"
description = "cryptography is a package which provides cryptographic recipes and primitives to Python developers."
optional = true
python-versions = ">=3.7"
optional = false
python-versions = ">=3.6"
files = [
{file = "cryptography-42.0.5-cp37-abi3-macosx_10_12_universal2.whl", hash = "sha256:a30596bae9403a342c978fb47d9b0ee277699fa53bbafad14706af51fe543d16"},
{file = "cryptography-42.0.5-cp37-abi3-macosx_10_12_x86_64.whl", hash = "sha256:b7ffe927ee6531c78f81aa17e684e2ff617daeba7f189f911065b2ea2d526dec"},
{file = "cryptography-42.0.5-cp37-abi3-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:2424ff4c4ac7f6b8177b53c17ed5d8fa74ae5955656867f5a8affaca36a27abb"},
{file = "cryptography-42.0.5-cp37-abi3-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:329906dcc7b20ff3cad13c069a78124ed8247adcac44b10bea1130e36caae0b4"},
{file = "cryptography-42.0.5-cp37-abi3-manylinux_2_28_aarch64.whl", hash = "sha256:b03c2ae5d2f0fc05f9a2c0c997e1bc18c8229f392234e8a0194f202169ccd278"},
{file = "cryptography-42.0.5-cp37-abi3-manylinux_2_28_x86_64.whl", hash = "sha256:f8837fe1d6ac4a8052a9a8ddab256bc006242696f03368a4009be7ee3075cdb7"},
{file = "cryptography-42.0.5-cp37-abi3-musllinux_1_1_aarch64.whl", hash = "sha256:0270572b8bd2c833c3981724b8ee9747b3ec96f699a9665470018594301439ee"},
{file = "cryptography-42.0.5-cp37-abi3-musllinux_1_1_x86_64.whl", hash = "sha256:b8cac287fafc4ad485b8a9b67d0ee80c66bf3574f655d3b97ef2e1082360faf1"},
{file = "cryptography-42.0.5-cp37-abi3-musllinux_1_2_aarch64.whl", hash = "sha256:16a48c23a62a2f4a285699dba2e4ff2d1cff3115b9df052cdd976a18856d8e3d"},
{file = "cryptography-42.0.5-cp37-abi3-musllinux_1_2_x86_64.whl", hash = "sha256:2bce03af1ce5a5567ab89bd90d11e7bbdff56b8af3acbbec1faded8f44cb06da"},
{file = "cryptography-42.0.5-cp37-abi3-win32.whl", hash = "sha256:b6cd2203306b63e41acdf39aa93b86fb566049aeb6dc489b70e34bcd07adca74"},
{file = "cryptography-42.0.5-cp37-abi3-win_amd64.whl", hash = "sha256:98d8dc6d012b82287f2c3d26ce1d2dd130ec200c8679b6213b3c73c08b2b7940"},
{file = "cryptography-42.0.5-cp39-abi3-macosx_10_12_universal2.whl", hash = "sha256:5e6275c09d2badf57aea3afa80d975444f4be8d3bc58f7f80d2a484c6f9485c8"},
{file = "cryptography-42.0.5-cp39-abi3-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:e4985a790f921508f36f81831817cbc03b102d643b5fcb81cd33df3fa291a1a1"},
{file = "cryptography-42.0.5-cp39-abi3-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:7cde5f38e614f55e28d831754e8a3bacf9ace5d1566235e39d91b35502d6936e"},
{file = "cryptography-42.0.5-cp39-abi3-manylinux_2_28_aarch64.whl", hash = "sha256:7367d7b2eca6513681127ebad53b2582911d1736dc2ffc19f2c3ae49997496bc"},
{file = "cryptography-42.0.5-cp39-abi3-manylinux_2_28_x86_64.whl", hash = "sha256:cd2030f6650c089aeb304cf093f3244d34745ce0cfcc39f20c6fbfe030102e2a"},
{file = "cryptography-42.0.5-cp39-abi3-musllinux_1_1_aarch64.whl", hash = "sha256:a2913c5375154b6ef2e91c10b5720ea6e21007412f6437504ffea2109b5a33d7"},
{file = "cryptography-42.0.5-cp39-abi3-musllinux_1_1_x86_64.whl", hash = "sha256:c41fb5e6a5fe9ebcd58ca3abfeb51dffb5d83d6775405305bfa8715b76521922"},
{file = "cryptography-42.0.5-cp39-abi3-musllinux_1_2_aarch64.whl", hash = "sha256:3eaafe47ec0d0ffcc9349e1708be2aaea4c6dd4978d76bf6eb0cb2c13636c6fc"},
{file = "cryptography-42.0.5-cp39-abi3-musllinux_1_2_x86_64.whl", hash = "sha256:1b95b98b0d2af784078fa69f637135e3c317091b615cd0905f8b8a087e86fa30"},
{file = "cryptography-42.0.5-cp39-abi3-win32.whl", hash = "sha256:1f71c10d1e88467126f0efd484bd44bca5e14c664ec2ede64c32f20875c0d413"},
{file = "cryptography-42.0.5-cp39-abi3-win_amd64.whl", hash = "sha256:a011a644f6d7d03736214d38832e030d8268bcff4a41f728e6030325fea3e400"},
{file = "cryptography-42.0.5-pp310-pypy310_pp73-macosx_10_12_x86_64.whl", hash = "sha256:9481ffe3cf013b71b2428b905c4f7a9a4f76ec03065b05ff499bb5682a8d9ad8"},
{file = "cryptography-42.0.5-pp310-pypy310_pp73-manylinux_2_28_aarch64.whl", hash = "sha256:ba334e6e4b1d92442b75ddacc615c5476d4ad55cc29b15d590cc6b86efa487e2"},
{file = "cryptography-42.0.5-pp310-pypy310_pp73-manylinux_2_28_x86_64.whl", hash = "sha256:ba3e4a42397c25b7ff88cdec6e2a16c2be18720f317506ee25210f6d31925f9c"},
{file = "cryptography-42.0.5-pp310-pypy310_pp73-win_amd64.whl", hash = "sha256:111a0d8553afcf8eb02a4fea6ca4f59d48ddb34497aa8706a6cf536f1a5ec576"},
{file = "cryptography-42.0.5-pp39-pypy39_pp73-macosx_10_12_x86_64.whl", hash = "sha256:cd65d75953847815962c84a4654a84850b2bb4aed3f26fadcc1c13892e1e29f6"},
{file = "cryptography-42.0.5-pp39-pypy39_pp73-manylinux_2_28_aarch64.whl", hash = "sha256:e807b3188f9eb0eaa7bbb579b462c5ace579f1cedb28107ce8b48a9f7ad3679e"},
{file = "cryptography-42.0.5-pp39-pypy39_pp73-manylinux_2_28_x86_64.whl", hash = "sha256:f12764b8fffc7a123f641d7d049d382b73f96a34117e0b637b80643169cec8ac"},
{file = "cryptography-42.0.5-pp39-pypy39_pp73-win_amd64.whl", hash = "sha256:37dd623507659e08be98eec89323469e8c7b4c1407c85112634ae3dbdb926fdd"},
{file = "cryptography-42.0.5.tar.gz", hash = "sha256:6fe07eec95dfd477eb9530aef5bead34fec819b3aaf6c5bd6d20565da607bfe1"},
{file = "cryptography-3.4.8-cp36-abi3-macosx_10_10_x86_64.whl", hash = "sha256:a00cf305f07b26c351d8d4e1af84ad7501eca8a342dedf24a7acb0e7b7406e14"},
{file = "cryptography-3.4.8-cp36-abi3-macosx_11_0_arm64.whl", hash = "sha256:f44d141b8c4ea5eb4dbc9b3ad992d45580c1d22bf5e24363f2fbf50c2d7ae8a7"},
{file = "cryptography-3.4.8-cp36-abi3-manylinux_2_12_x86_64.manylinux2010_x86_64.whl", hash = "sha256:0a7dcbcd3f1913f664aca35d47c1331fce738d44ec34b7be8b9d332151b0b01e"},
{file = "cryptography-3.4.8-cp36-abi3-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:34dae04a0dce5730d8eb7894eab617d8a70d0c97da76b905de9efb7128ad7085"},
{file = "cryptography-3.4.8-cp36-abi3-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:1eb7bb0df6f6f583dd8e054689def236255161ebbcf62b226454ab9ec663746b"},
{file = "cryptography-3.4.8-cp36-abi3-manylinux_2_24_x86_64.whl", hash = "sha256:9965c46c674ba8cc572bc09a03f4c649292ee73e1b683adb1ce81e82e9a6a0fb"},
{file = "cryptography-3.4.8-cp36-abi3-musllinux_1_1_aarch64.whl", hash = "sha256:3c4129fc3fdc0fa8e40861b5ac0c673315b3c902bbdc05fc176764815b43dd1d"},
{file = "cryptography-3.4.8-cp36-abi3-musllinux_1_1_x86_64.whl", hash = "sha256:695104a9223a7239d155d7627ad912953b540929ef97ae0c34c7b8bf30857e89"},
{file = "cryptography-3.4.8-cp36-abi3-win32.whl", hash = "sha256:21ca464b3a4b8d8e86ba0ee5045e103a1fcfac3b39319727bc0fc58c09c6aff7"},
{file = "cryptography-3.4.8-cp36-abi3-win_amd64.whl", hash = "sha256:3520667fda779eb788ea00080124875be18f2d8f0848ec00733c0ec3bb8219fc"},
{file = "cryptography-3.4.8-pp36-pypy36_pp73-manylinux_2_12_x86_64.manylinux2010_x86_64.whl", hash = "sha256:d2a6e5ef66503da51d2110edf6c403dc6b494cc0082f85db12f54e9c5d4c3ec5"},
{file = "cryptography-3.4.8-pp36-pypy36_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:a305600e7a6b7b855cd798e00278161b681ad6e9b7eca94c721d5f588ab212af"},
{file = "cryptography-3.4.8-pp36-pypy36_pp73-manylinux_2_24_x86_64.whl", hash = "sha256:3fa3a7ccf96e826affdf1a0a9432be74dc73423125c8f96a909e3835a5ef194a"},
{file = "cryptography-3.4.8-pp37-pypy37_pp73-macosx_10_10_x86_64.whl", hash = "sha256:d9ec0e67a14f9d1d48dd87a2531009a9b251c02ea42851c060b25c782516ff06"},
{file = "cryptography-3.4.8-pp37-pypy37_pp73-manylinux_2_12_x86_64.manylinux2010_x86_64.whl", hash = "sha256:5b0fbfae7ff7febdb74b574055c7466da334a5371f253732d7e2e7525d570498"},
{file = "cryptography-3.4.8-pp37-pypy37_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:94fff993ee9bc1b2440d3b7243d488c6a3d9724cc2b09cdb297f6a886d040ef7"},
{file = "cryptography-3.4.8-pp37-pypy37_pp73-manylinux_2_24_x86_64.whl", hash = "sha256:8695456444f277af73a4877db9fc979849cd3ee74c198d04fc0776ebc3db52b9"},
{file = "cryptography-3.4.8-pp37-pypy37_pp73-win_amd64.whl", hash = "sha256:cd65b60cfe004790c795cc35f272e41a3df4631e2fb6b35aa7ac6ef2859d554e"},
{file = "cryptography-3.4.8.tar.gz", hash = "sha256:94cc5ed4ceaefcbe5bf38c8fba6a21fc1d365bb8fb826ea1688e3370b2e24a1c"},
]
[package.dependencies]
cffi = {version = ">=1.12", markers = "platform_python_implementation != \"PyPy\""}
cffi = ">=1.12"
[package.extras]
docs = ["sphinx (>=5.3.0)", "sphinx-rtd-theme (>=1.1.1)"]
docstest = ["pyenchant (>=1.6.11)", "readme-renderer", "sphinxcontrib-spelling (>=4.0.1)"]
nox = ["nox"]
pep8test = ["check-sdist", "click", "mypy", "ruff"]
sdist = ["build"]
docs = ["sphinx (>=1.6.5,!=1.8.0,!=3.1.0,!=3.1.1)", "sphinx-rtd-theme"]
docstest = ["doc8", "pyenchant (>=1.6.11)", "sphinxcontrib-spelling (>=4.0.1)", "twine (>=1.12.0)"]
pep8test = ["black", "flake8", "flake8-import-order", "pep8-naming"]
sdist = ["setuptools-rust (>=0.11.4)"]
ssh = ["bcrypt (>=3.1.5)"]
test = ["certifi", "pretend", "pytest (>=6.2.0)", "pytest-benchmark", "pytest-cov", "pytest-xdist"]
test-randomorder = ["pytest-randomly"]
test = ["hypothesis (>=1.11.4,!=3.79.2)", "iso8601", "pretend", "pytest (>=6.0)", "pytest-cov", "pytest-subtests", "pytest-xdist", "pytz"]
[[package]]
name = "cycler"
@ -1096,6 +1081,16 @@ idna = ["idna (>=2.1,<4.0)"]
trio = ["trio (>=0.14,<0.23)"]
wmi = ["wmi (>=1.5.1,<2.0.0)"]
[[package]]
name = "docx2txt"
version = "0.8"
description = "A pure python-based utility to extract text and images from docx files."
optional = false
python-versions = "*"
files = [
{file = "docx2txt-0.8.tar.gz", hash = "sha256:2c06d98d7cfe2d3947e5760a57d924e3ff07745b379c8737723922e7009236e5"},
]
[[package]]
name = "email-validator"
version = "2.1.0.post1"
@ -3173,6 +3168,7 @@ optional = true
python-versions = ">=3"
files = [
{file = "nvidia_nvjitlink_cu12-12.3.101-py3-none-manylinux1_x86_64.whl", hash = "sha256:64335a8088e2b9d196ae8665430bc6a2b7e6ef2eb877a9c735c804bd4ff6467c"},
{file = "nvidia_nvjitlink_cu12-12.3.101-py3-none-manylinux2014_aarch64.whl", hash = "sha256:211a63e7b30a9d62f1a853e19928fbb1a750e3f17a13a3d1f98ff0ced19478dd"},
{file = "nvidia_nvjitlink_cu12-12.3.101-py3-none-win_amd64.whl", hash = "sha256:1b2e317e437433753530792f13eece58f0aec21a2b05903be7bffe58a606cbd1"},
]
@ -3937,7 +3933,7 @@ pyasn1 = ">=0.4.6,<0.6.0"
name = "pycparser"
version = "2.21"
description = "C parser in Python"
optional = true
optional = false
python-versions = ">=2.7, !=3.0.*, !=3.1.*, !=3.2.*, !=3.3.*"
files = [
{file = "pycparser-2.21-py2.py3-none-any.whl", hash = "sha256:8ee45429555515e1f6b185e78100aea234072576aa43ab53aefcae078162fca9"},
@ -4437,6 +4433,7 @@ files = [
{file = "PyYAML-6.0.1-cp311-cp311-win_amd64.whl", hash = "sha256:bf07ee2fef7014951eeb99f56f39c9bb4af143d8aa3c21b1677805985307da34"},
{file = "PyYAML-6.0.1-cp312-cp312-macosx_10_9_x86_64.whl", hash = "sha256:855fb52b0dc35af121542a76b9a84f8d1cd886ea97c84703eaa6d88e37a2ad28"},
{file = "PyYAML-6.0.1-cp312-cp312-macosx_11_0_arm64.whl", hash = "sha256:40df9b996c2b73138957fe23a16a4f0ba614f4c0efce1e9406a184b6d07fa3a9"},
{file = "PyYAML-6.0.1-cp312-cp312-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:a08c6f0fe150303c1c6b71ebcd7213c2858041a7e01975da3a99aed1e7a378ef"},
{file = "PyYAML-6.0.1-cp312-cp312-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:6c22bec3fbe2524cde73d7ada88f6566758a8f7227bfbf93a408a9d86bcc12a0"},
{file = "PyYAML-6.0.1-cp312-cp312-musllinux_1_1_x86_64.whl", hash = "sha256:8d4e9c88387b0f5c7d5f281e55304de64cf7f9c0021a3525bd3b1c542da3b0e4"},
{file = "PyYAML-6.0.1-cp312-cp312-win32.whl", hash = "sha256:d483d2cdf104e7c9fa60c544d92981f12ad66a457afae824d146093b8c294c54"},
@ -6330,4 +6327,4 @@ vector-stores-qdrant = ["llama-index-vector-stores-qdrant"]
[metadata]
lock-version = "2.0"
python-versions = ">=3.11,<3.12"
content-hash = "0b3665bd11a604609249ff0267e4e5cf009881d16a84f9774fc54d45a1373e09"
content-hash = "992c2486ee05e66eab29026e4275dd5509074b38a31ead9db2271e6f94f6da08"

View File

@ -218,7 +218,7 @@ class SagemakerLLM(CustomLLM):
response_body = resp["Body"]
response_str = response_body.read().decode("utf-8")
response_dict = eval(response_str)
response_dict = json.loads(response_str)
return CompletionResponse(
text=response_dict[0]["generated_text"][len(prompt) :], raw=resp

View File

@ -22,13 +22,24 @@ class LLMComponent:
@inject
def __init__(self, settings: Settings) -> None:
llm_mode = settings.llm.mode
if settings.llm.tokenizer:
set_global_tokenizer(
AutoTokenizer.from_pretrained(
pretrained_model_name_or_path=settings.llm.tokenizer,
cache_dir=str(models_cache_path),
if settings.llm.tokenizer and settings.llm.mode != "mock":
# Try to download the tokenizer. If it fails, the LLM will still work
# using the default one, which is less accurate.
try:
set_global_tokenizer(
AutoTokenizer.from_pretrained(
pretrained_model_name_or_path=settings.llm.tokenizer,
cache_dir=str(models_cache_path),
token=settings.huggingface.access_token,
)
)
except Exception as e:
logger.warning(
"Failed to download tokenizer %s. Falling back to "
"default tokenizer.",
settings.llm.tokenizer,
e,
)
)
logger.info("Initializing the LLM in mode=%s", llm_mode)
match settings.llm.mode:
@ -40,7 +51,7 @@ class LLMComponent:
"Local dependencies not found, install with `poetry install --extras llms-llama-cpp`"
) from e
prompt_style = get_prompt_style(settings.llamacpp.prompt_style)
prompt_style = get_prompt_style(settings.llm.prompt_style)
settings_kwargs = {
"tfs_z": settings.llamacpp.tfs_z, # ollama and llama-cpp
"top_k": settings.llamacpp.top_k, # ollama and llama-cpp
@ -98,15 +109,20 @@ class LLMComponent:
raise ImportError(
"OpenAILike dependencies not found, install with `poetry install --extras llms-openai-like`"
) from e
prompt_style = get_prompt_style(settings.llm.prompt_style)
openai_settings = settings.openai
self.llm = OpenAILike(
api_base=openai_settings.api_base,
api_key=openai_settings.api_key,
model=openai_settings.model,
is_chat_model=True,
max_tokens=None,
max_tokens=settings.llm.max_new_tokens,
api_version="",
temperature=settings.llm.temperature,
context_window=settings.llm.context_window,
max_new_tokens=settings.llm.max_new_tokens,
messages_to_prompt=prompt_style.messages_to_prompt,
completion_to_prompt=prompt_style.completion_to_prompt,
)
case "ollama":
try:

View File

@ -104,6 +104,17 @@ class LLMSettings(BaseModel):
0.1,
description="The temperature of the model. Increasing the temperature will make the model answer more creatively. A value of 0.1 would be more factual.",
)
prompt_style: Literal["default", "llama2", "tag", "mistral", "chatml"] = Field(
"llama2",
description=(
"The prompt style to use for the chat engine. "
"If `default` - use the default prompt style from the llama_index. It should look like `role: message`.\n"
"If `llama2` - use the llama2 prompt style from the llama_index. Based on `<s>`, `[INST]` and `<<SYS>>`.\n"
"If `tag` - use the `tag` prompt style. It should look like `<|role|>: message`. \n"
"If `mistral` - use the `mistral prompt style. It shoudl look like <s>[INST] {System Prompt} [/INST]</s>[INST] { UserInstructions } [/INST]"
"`llama2` is the historic behaviour. `default` might work better with your custom models."
),
)
class VectorstoreSettings(BaseModel):
@ -117,18 +128,6 @@ class NodeStoreSettings(BaseModel):
class LlamaCPPSettings(BaseModel):
llm_hf_repo_id: str
llm_hf_model_file: str
prompt_style: Literal["default", "llama2", "tag", "mistral", "chatml"] = Field(
"llama2",
description=(
"The prompt style to use for the chat engine. "
"If `default` - use the default prompt style from the llama_index. It should look like `role: message`.\n"
"If `llama2` - use the llama2 prompt style from the llama_index. Based on `<s>`, `[INST]` and `<<SYS>>`.\n"
"If `tag` - use the `tag` prompt style. It should look like `<|role|>: message`. \n"
"If `mistral` - use the `mistral prompt style. It shoudl look like <s>[INST] {System Prompt} [/INST]</s>[INST] { UserInstructions } [/INST]"
"`llama2` is the historic behaviour. `default` might work better with your custom models."
),
)
tfs_z: float = Field(
1.0,
description="Tail free sampling is used to reduce the impact of less probable tokens from the output. A higher value (e.g., 2.0) will reduce the impact more, while a value of 1.0 disables this setting.",
@ -151,6 +150,10 @@ class HuggingFaceSettings(BaseModel):
embedding_hf_model_name: str = Field(
description="Name of the HuggingFace model to use for embeddings"
)
access_token: str = Field(
None,
description="Huggingface access token, required to download some models",
)
class EmbeddingSettings(BaseModel):

View File

@ -13,6 +13,8 @@ injector = "^0.21.0"
pyyaml = "^6.0.1"
watchdog = "^4.0.0"
transformers = "^4.38.2"
docx2txt = "^0.8"
cryptography = "^3.1"
# LlamaIndex core libs
llama-index-core = "^0.10.14"
llama-index-readers-file = "^0.1.6"

View File

@ -23,6 +23,7 @@ ollama:
llm_model: ${PGPT_OLLAMA_LLM_MODEL:mistral}
embedding_model: ${PGPT_OLLAMA_EMBEDDING_MODEL:nomic-embed-text}
api_base: ${PGPT_OLLAMA_API_BASE:http://ollama:11434}
embedding_api_base: ${PGPT_OLLAMA_EMBEDDING_API_BASE:http://ollama:11434}
tfs_z: ${PGPT_OLLAMA_TFS_Z:1.0}
top_k: ${PGPT_OLLAMA_TOP_K:40}
top_p: ${PGPT_OLLAMA_TOP_P:0.9}

View File

@ -8,9 +8,9 @@ llm:
max_new_tokens: 512
context_window: 3900
tokenizer: mistralai/Mistral-7B-Instruct-v0.2
prompt_style: "mistral"
llamacpp:
prompt_style: "mistral"
llm_hf_repo_id: TheBloke/Mistral-7B-Instruct-v0.2-GGUF
llm_hf_model_file: mistral-7b-instruct-v0.2.Q4_K_M.gguf
@ -24,4 +24,4 @@ vectorstore:
database: qdrant
qdrant:
path: local_data/private_gpt/qdrant
path: local_data/private_gpt/qdrant

View File

@ -36,6 +36,7 @@ ui:
llm:
mode: llamacpp
prompt_style: "mistral"
# Should be matching the selected model
max_new_tokens: 512
context_window: 3900
@ -53,7 +54,6 @@ rag:
top_n: 1
llamacpp:
prompt_style: "mistral"
llm_hf_repo_id: TheBloke/Mistral-7B-Instruct-v0.2-GGUF
llm_hf_model_file: mistral-7b-instruct-v0.2.Q4_K_M.gguf
tfs_z: 1.0 # Tail free sampling is used to reduce the impact of less probable tokens from the output. A higher value (e.g., 2.0) will reduce the impact more, while a value of 1.0 disables this setting
@ -69,6 +69,7 @@ embedding:
huggingface:
embedding_hf_model_name: BAAI/bge-small-en-v1.5
access_token: ${HUGGINGFACE_TOKEN:}
vectorstore:
database: qdrant