mirror of
https://github.com/imartinez/privateGPT.git
synced 2025-07-03 02:27:25 +00:00
Merge branch 'abhiruka-main'
This commit is contained in:
commit
fc50eb1b89
@ -81,6 +81,11 @@ Note: you could turn off your internet connection, and the script inference woul
|
||||
|
||||
Type `exit` to finish the script.
|
||||
|
||||
|
||||
### Script Arguments
|
||||
The script also supports optional command-line arguments to modify its behavior. You can see a full list of these arguments by running the command ```python privateGPT.py --help``` in your terminal
|
||||
|
||||
|
||||
# How does it work?
|
||||
Selecting the right local models and the power of `LangChain` you can run the entire pipeline locally, without any data leaving your environment, and with reasonable performance.
|
||||
|
||||
|
@ -6,6 +6,7 @@ from langchain.callbacks.streaming_stdout import StreamingStdOutCallbackHandler
|
||||
from langchain.vectorstores import Chroma
|
||||
from langchain.llms import GPT4All, LlamaCpp
|
||||
import os
|
||||
import argparse
|
||||
|
||||
load_dotenv()
|
||||
|
||||
@ -19,11 +20,14 @@ model_n_ctx = os.environ.get('MODEL_N_CTX')
|
||||
from constants import CHROMA_SETTINGS
|
||||
|
||||
def main():
|
||||
# Parse the command line arguments
|
||||
args = parse_arguments()
|
||||
embeddings = HuggingFaceEmbeddings(model_name=embeddings_model_name)
|
||||
db = Chroma(persist_directory=persist_directory, embedding_function=embeddings, client_settings=CHROMA_SETTINGS)
|
||||
retriever = db.as_retriever()
|
||||
# activate/deactivate the streaming StdOut callback for LLMs
|
||||
callbacks = [] if args.mute_stream else [StreamingStdOutCallbackHandler()]
|
||||
# Prepare the LLM
|
||||
callbacks = [StreamingStdOutCallbackHandler()]
|
||||
match model_type:
|
||||
case "LlamaCpp":
|
||||
llm = LlamaCpp(model_path=model_path, n_ctx=model_n_ctx, callbacks=callbacks, verbose=False)
|
||||
@ -32,7 +36,7 @@ def main():
|
||||
case _default:
|
||||
print(f"Model {model_type} not supported!")
|
||||
exit;
|
||||
qa = RetrievalQA.from_chain_type(llm=llm, chain_type="stuff", retriever=retriever, return_source_documents=True)
|
||||
qa = RetrievalQA.from_chain_type(llm=llm, chain_type="stuff", retriever=retriever, return_source_documents= not args.hide_source)
|
||||
# Interactive questions and answers
|
||||
while True:
|
||||
query = input("\nEnter a query: ")
|
||||
@ -41,7 +45,7 @@ def main():
|
||||
|
||||
# Get the answer from the chain
|
||||
res = qa(query)
|
||||
answer, docs = res['result'], res['source_documents']
|
||||
answer, docs = res['result'], [] if args.hide_source else res['source_documents']
|
||||
|
||||
# Print the result
|
||||
print("\n\n> Question:")
|
||||
@ -54,5 +58,18 @@ def main():
|
||||
print("\n> " + document.metadata["source"] + ":")
|
||||
print(document.page_content)
|
||||
|
||||
def parse_arguments():
|
||||
parser = argparse.ArgumentParser(description='privateGPT: Ask questions to your documents without an internet connection, '
|
||||
'using the power of LLMs.')
|
||||
parser.add_argument("--hide-source", "-S", action='store_true',
|
||||
help='Use this flag to disable printing of source documents used for answers.')
|
||||
|
||||
parser.add_argument("--mute-stream", "-M",
|
||||
action='store_true',
|
||||
help='Use this flag to disable the streaming StdOut callback for LLMs.')
|
||||
|
||||
return parser.parse_args()
|
||||
|
||||
|
||||
if __name__ == "__main__":
|
||||
main()
|
||||
|
Loading…
Reference in New Issue
Block a user