from fastapi import APIRouter from pydantic import BaseModel from starlette.responses import StreamingResponse from private_gpt.open_ai.extensions.context_filter import ContextFilter from private_gpt.open_ai.openai_models import ( OpenAICompletion, OpenAIMessage, ) from private_gpt.server.chat.chat_router import ChatBody, chat_completion completions_router = APIRouter(prefix="/v1") class CompletionsBody(BaseModel): prompt: str use_context: bool = False context_filter: ContextFilter | None = None stream: bool = False model_config = { "json_schema_extra": { "examples": [ { "prompt": "How do you fry an egg?", "stream": False, "use_context": False, } ] } } @completions_router.post( "/completions", response_model=None, summary="Completion", responses={200: {"model": OpenAICompletion}}, tags=["Contextual Completions"], ) def prompt_completion(body: CompletionsBody) -> OpenAICompletion | StreamingResponse: """We recommend most users use our Chat completions API. Given a prompt, the model will return one predicted completion. If `use_context` is set to `true`, the model will use context coming from the ingested documents to create the response. The documents being used can be filtered using the `context_filter` and passing the document IDs to be used. Ingested documents IDs can be found using `/ingest/list` endpoint. If you want all ingested documents to be used, remove `context_filter` altogether. When using `'stream': true`, the API will return data chunks following [OpenAI's streaming model](https://platform.openai.com/docs/api-reference/chat/streaming): ``` {"id":"12345","object":"completion.chunk","created":1694268190, "model":"private-gpt","choices":[{"index":0,"delta":{"content":"Hello"}, "finish_reason":null}]} ``` """ message = OpenAIMessage(content=body.prompt, role="user") chat_body = ChatBody( messages=[message], use_context=body.use_context, stream=body.stream, context_filter=body.context_filter, ) return chat_completion(chat_body)