from injector import inject, singleton from llama_index import MockEmbedding from llama_index.embeddings.base import BaseEmbedding from private_gpt.paths import models_cache_path from private_gpt.settings.settings import settings @singleton class EmbeddingComponent: embedding_model: BaseEmbedding @inject def __init__(self) -> None: match settings.llm.mode: case "local" | "sagemaker": from llama_index.embeddings import HuggingFaceEmbedding self.embedding_model = HuggingFaceEmbedding( model_name=settings.local.embedding_hf_model_name, cache_folder=str(models_cache_path), ) case "openai": from llama_index import OpenAIEmbedding openai_settings = settings.openai.api_key self.embedding_model = OpenAIEmbedding(api_key=openai_settings) case "mock": # Not a random number, is the dimensionality used by # the default embedding model self.embedding_model = MockEmbedding(384)