privateGPT/fern/docs/pages/installation/troubleshooting.mdx
Javier Martinez 01b7ccd064
fix(config): make tokenizer optional and include a troubleshooting doc (#1998)
* docs: add troubleshooting

* fix: pass HF token to setup script and prevent to download tokenizer when it is empty

* fix: improve log and disable specific tokenizer by default

* chore: change HF_TOKEN environment to be aligned with default config

* ifx: mypy
2024-07-17 10:06:27 +02:00

44 lines
1.4 KiB
Plaintext

# Downloading Gated and Private Models
Many models are gated or private, requiring special access to use them. Follow these steps to gain access and set up your environment for using these models.
## Accessing Gated Models
1. **Request Access:**
Follow the instructions provided [here](https://huggingface.co/docs/hub/en/models-gated) to request access to the gated model.
2. **Generate a Token:**
Once you have access, generate a token by following the instructions [here](https://huggingface.co/docs/hub/en/security-tokens).
3. **Set the Token:**
Add the generated token to your `settings.yaml` file:
```yaml
huggingface:
access_token: <your-token>
```
Alternatively, set the `HF_TOKEN` environment variable:
```bash
export HF_TOKEN=<your-token>
```
# Tokenizer Setup
PrivateGPT uses the `AutoTokenizer` library to tokenize input text accurately. It connects to HuggingFace's API to download the appropriate tokenizer for the specified model.
## Configuring the Tokenizer
1. **Specify the Model:**
In your `settings.yaml` file, specify the model you want to use:
```yaml
llm:
tokenizer: mistralai/Mistral-7B-Instruct-v0.2
```
2. **Set Access Token for Gated Models:**
If you are using a gated model, ensure the `access_token` is set as mentioned in the previous section.
This configuration ensures that PrivateGPT can download and use the correct tokenizer for the model you are working with.