mirror of
https://github.com/imartinez/privateGPT.git
synced 2025-05-02 13:34:26 +00:00
* Extract optional dependencies * Separate local mode into llms-llama-cpp and embeddings-huggingface for clarity * Support Ollama embeddings * Upgrade to llamaindex 0.10.14. Remove legacy use of ServiceContext in ContextChatEngine * Fix vector retriever filters
188 lines
6.5 KiB
Python
188 lines
6.5 KiB
Python
from dataclasses import dataclass
|
|
|
|
from injector import inject, singleton
|
|
from llama_index.core.chat_engine import ContextChatEngine, SimpleChatEngine
|
|
from llama_index.core.chat_engine.types import (
|
|
BaseChatEngine,
|
|
)
|
|
from llama_index.core.indices import VectorStoreIndex
|
|
from llama_index.core.indices.postprocessor import MetadataReplacementPostProcessor
|
|
from llama_index.core.llms import ChatMessage, MessageRole
|
|
from llama_index.core.storage import StorageContext
|
|
from llama_index.core.types import TokenGen
|
|
from pydantic import BaseModel
|
|
|
|
from private_gpt.components.embedding.embedding_component import EmbeddingComponent
|
|
from private_gpt.components.llm.llm_component import LLMComponent
|
|
from private_gpt.components.node_store.node_store_component import NodeStoreComponent
|
|
from private_gpt.components.vector_store.vector_store_component import (
|
|
VectorStoreComponent,
|
|
)
|
|
from private_gpt.open_ai.extensions.context_filter import ContextFilter
|
|
from private_gpt.server.chunks.chunks_service import Chunk
|
|
|
|
|
|
class Completion(BaseModel):
|
|
response: str
|
|
sources: list[Chunk] | None = None
|
|
|
|
|
|
class CompletionGen(BaseModel):
|
|
response: TokenGen
|
|
sources: list[Chunk] | None = None
|
|
|
|
|
|
@dataclass
|
|
class ChatEngineInput:
|
|
system_message: ChatMessage | None = None
|
|
last_message: ChatMessage | None = None
|
|
chat_history: list[ChatMessage] | None = None
|
|
|
|
@classmethod
|
|
def from_messages(cls, messages: list[ChatMessage]) -> "ChatEngineInput":
|
|
# Detect if there is a system message, extract the last message and chat history
|
|
system_message = (
|
|
messages[0]
|
|
if len(messages) > 0 and messages[0].role == MessageRole.SYSTEM
|
|
else None
|
|
)
|
|
last_message = (
|
|
messages[-1]
|
|
if len(messages) > 0 and messages[-1].role == MessageRole.USER
|
|
else None
|
|
)
|
|
# Remove from messages list the system message and last message,
|
|
# if they exist. The rest is the chat history.
|
|
if system_message:
|
|
messages.pop(0)
|
|
if last_message:
|
|
messages.pop(-1)
|
|
chat_history = messages if len(messages) > 0 else None
|
|
|
|
return cls(
|
|
system_message=system_message,
|
|
last_message=last_message,
|
|
chat_history=chat_history,
|
|
)
|
|
|
|
|
|
@singleton
|
|
class ChatService:
|
|
@inject
|
|
def __init__(
|
|
self,
|
|
llm_component: LLMComponent,
|
|
vector_store_component: VectorStoreComponent,
|
|
embedding_component: EmbeddingComponent,
|
|
node_store_component: NodeStoreComponent,
|
|
) -> None:
|
|
self.llm_component = llm_component
|
|
self.embedding_component = embedding_component
|
|
self.vector_store_component = vector_store_component
|
|
self.storage_context = StorageContext.from_defaults(
|
|
vector_store=vector_store_component.vector_store,
|
|
docstore=node_store_component.doc_store,
|
|
index_store=node_store_component.index_store,
|
|
)
|
|
self.index = VectorStoreIndex.from_vector_store(
|
|
vector_store_component.vector_store,
|
|
storage_context=self.storage_context,
|
|
llm=llm_component.llm,
|
|
embed_model=embedding_component.embedding_model,
|
|
show_progress=True,
|
|
)
|
|
|
|
def _chat_engine(
|
|
self,
|
|
system_prompt: str | None = None,
|
|
use_context: bool = False,
|
|
context_filter: ContextFilter | None = None,
|
|
) -> BaseChatEngine:
|
|
if use_context:
|
|
vector_index_retriever = self.vector_store_component.get_retriever(
|
|
index=self.index, context_filter=context_filter
|
|
)
|
|
return ContextChatEngine.from_defaults(
|
|
system_prompt=system_prompt,
|
|
retriever=vector_index_retriever,
|
|
llm=self.llm_component.llm, # Takes no effect at the moment
|
|
node_postprocessors=[
|
|
MetadataReplacementPostProcessor(target_metadata_key="window"),
|
|
],
|
|
)
|
|
else:
|
|
return SimpleChatEngine.from_defaults(
|
|
system_prompt=system_prompt,
|
|
llm=self.llm_component.llm,
|
|
)
|
|
|
|
def stream_chat(
|
|
self,
|
|
messages: list[ChatMessage],
|
|
use_context: bool = False,
|
|
context_filter: ContextFilter | None = None,
|
|
) -> CompletionGen:
|
|
chat_engine_input = ChatEngineInput.from_messages(messages)
|
|
last_message = (
|
|
chat_engine_input.last_message.content
|
|
if chat_engine_input.last_message
|
|
else None
|
|
)
|
|
system_prompt = (
|
|
chat_engine_input.system_message.content
|
|
if chat_engine_input.system_message
|
|
else None
|
|
)
|
|
chat_history = (
|
|
chat_engine_input.chat_history if chat_engine_input.chat_history else None
|
|
)
|
|
|
|
chat_engine = self._chat_engine(
|
|
system_prompt=system_prompt,
|
|
use_context=use_context,
|
|
context_filter=context_filter,
|
|
)
|
|
streaming_response = chat_engine.stream_chat(
|
|
message=last_message if last_message is not None else "",
|
|
chat_history=chat_history,
|
|
)
|
|
sources = [Chunk.from_node(node) for node in streaming_response.source_nodes]
|
|
completion_gen = CompletionGen(
|
|
response=streaming_response.response_gen, sources=sources
|
|
)
|
|
return completion_gen
|
|
|
|
def chat(
|
|
self,
|
|
messages: list[ChatMessage],
|
|
use_context: bool = False,
|
|
context_filter: ContextFilter | None = None,
|
|
) -> Completion:
|
|
chat_engine_input = ChatEngineInput.from_messages(messages)
|
|
last_message = (
|
|
chat_engine_input.last_message.content
|
|
if chat_engine_input.last_message
|
|
else None
|
|
)
|
|
system_prompt = (
|
|
chat_engine_input.system_message.content
|
|
if chat_engine_input.system_message
|
|
else None
|
|
)
|
|
chat_history = (
|
|
chat_engine_input.chat_history if chat_engine_input.chat_history else None
|
|
)
|
|
|
|
chat_engine = self._chat_engine(
|
|
system_prompt=system_prompt,
|
|
use_context=use_context,
|
|
context_filter=context_filter,
|
|
)
|
|
wrapped_response = chat_engine.chat(
|
|
message=last_message if last_message is not None else "",
|
|
chat_history=chat_history,
|
|
)
|
|
sources = [Chunk.from_node(node) for node in wrapped_response.source_nodes]
|
|
completion = Completion(response=wrapped_response.response, sources=sources)
|
|
return completion
|