mirror of
https://github.com/imartinez/privateGPT.git
synced 2025-05-03 13:57:47 +00:00
* Dockerize private-gpt * Use port 8001 for local development * Add setup script * Add CUDA Dockerfile * Create README.md * Make the API use OpenAI response format * Truncate prompt * refactor: add models and __pycache__ to .gitignore * Better naming * Update readme * Move models ignore to it's folder * Add scaffolding * Apply formatting * Fix tests * Working sagemaker custom llm * Fix linting * Fix linting * Enable streaming * Allow all 3.11 python versions * Use llama 2 prompt format and fix completion * Restructure (#3) Co-authored-by: Pablo Orgaz <pablo@Pablos-MacBook-Pro.local> * Fix Dockerfile * Use a specific build stage * Cleanup * Add FastAPI skeleton * Cleanup openai package * Fix DI and tests * Split tests and tests with coverage * Remove old scaffolding * Add settings logic (#4) * Add settings logic * Add settings for sagemaker --------- Co-authored-by: Pablo Orgaz <pablo@Pablos-MacBook-Pro.local> * Local LLM (#5) * Add settings logic * Add settings for sagemaker * Add settings-local-example.yaml * Delete terraform files * Refactor tests to use fixtures * Join deltas * Add local model support --------- Co-authored-by: Pablo Orgaz <pablo@Pablos-MacBook-Pro.local> * Update README.md * Fix tests * Version bump * Enable simple llamaindex observability (#6) * Enable simple llamaindex observability * Improve code through linting * Update README.md * Move to async (#7) * Migrate implementation to use asyncio * Formatting * Cleanup * Linting --------- Co-authored-by: Pablo Orgaz <pablo@Pablos-MacBook-Pro.local> * Query Docs and gradio UI * Remove unnecessary files * Git ignore chromadb folder * Async migration + DI Cleanup * Fix tests * Add integration test * Use fastapi responses * Retrieval service with partial implementation * Cleanup * Run formatter * Fix types * Fetch nodes asynchronously * Install local dependencies in tests * Install ui dependencies in tests * Install dependencies for llama-cpp * Fix sudo * Attempt to fix cuda issues * Attempt to fix cuda issues * Try to reclaim some space from ubuntu machine * Retrieval with context * Fix lint and imports * Fix mypy * Make retrieval API a POST * Make Completions body a dataclass * Fix LLM chat message order * Add Query Chunks to Gradio UI * Improve rag query prompt * Rollback CI Changes * Move to sync code * Using Llamaindex abstraction for query retrieval * Fix types * Default to CONDENSED chat mode for contextualized chat * Rename route function * Add Chat endpoint * Remove webhooks * Add IntelliJ run config to gitignore * .gitignore applied * Sync chat completion * Refactor total * Typo in context_files.py * Add embeddings component and service * Remove wrong dataclass from IngestService * Filter by context file id implementation * Fix typing * Implement context_filter and separate from the bool use_context in the API * Change chunks api to avoid conceptual class of the context concept * Deprecate completions and fix tests * Remove remaining dataclasses * Use embedding component in ingest service * Fix ingestion to have multipart and local upload * Fix ingestion API * Add chunk tests * Add configurable paths * Cleaning up * Add more docs * IngestResponse includes a list of IngestedDocs * Use IngestedDoc in the Chunk document reference * Rename ingest routes to ingest_router.py * Fix test working directory for intellij * Set testpaths for pytest * Remove unused as_chat_engine * Add .fleet ide to gitignore * Make LLM and Embedding model configurable * Fix imports and checks * Let local_data folder exist empty in the repository * Don't use certain metadata in LLM * Remove long lines * Fix windows installation * Typos * Update poetry.lock * Add TODO for linux * Script and first version of docs * No jekill build * Fix relative url to openapi json * Change default docs values * Move chromadb dependency to the general group * Fix tests to use separate local_data * Create CNAME * Update CNAME * Fix openapi.json relative path * PrivateGPT logo * WIP OpenAPI documentation metadata * Add ingest script (#11) * Add ingest script * Fix broken name refactor * Add ingest docs and Makefile script * Linting * Move transformers to main dependency * Move torch to main dependencies * Don't load HuggingFaceEmbedding in tests * Fix lint --------- Co-authored-by: Pablo Orgaz <pablo@Pablos-MacBook-Pro.local> * Rename file to camel_case * Commit settings-local.yaml * Move documentation to public docs * Fix docker image for linux * Installation and Running the Server documentation * Move back to docs folder, as it is the only supported by github pages * Delete CNAME * Create CNAME * Delete CNAME * Create CNAME * Improved API documentation * Fix lint * Completions documentation * Updated openapi scheme * Ingestion API doc * Minor doc changes * Updated openapi scheme * Chunks API documentation * Embeddings and Health API, and homogeneous responses * Revamp README with new skeleton of content * More docs * PrivateGPT logo * Improve UI * Update ingestion docu * Update README with new sections * Use context window in the retriever * Gradio Documentation * Add logo to UI * Include Contributing and Community sections to README * Update links to resources in the README * Small README.md updates * Wrap lines of README.md * Don't put health under /v1 * Add copy button to Chat * Architecture documentation * Updated openapi.json * Updated openapi.json * Updated openapi.json * Change UI label * Update documentation * Add releases link to README.md * Gradio avatar and stop debug * Readme update * Clean old files * Remove unused terraform checks * Update twitter link. * Disable minimum coverage * Clean install message in README.md --------- Co-authored-by: Pablo Orgaz <pablo@Pablos-MacBook-Pro.local> Co-authored-by: Iván Martínez <ivanmartit@gmail.com> Co-authored-by: RubenGuerrero <ruben.guerrero@boopos.com> Co-authored-by: Daniel Gallego Vico <daniel.gallego@bq.com>
249 lines
8.5 KiB
Python
249 lines
8.5 KiB
Python
# mypy: ignore-errors
|
|
from __future__ import annotations
|
|
|
|
import io
|
|
import json
|
|
from typing import TYPE_CHECKING, Any
|
|
|
|
import boto3 # type: ignore
|
|
from llama_index.bridge.pydantic import Field
|
|
from llama_index.llms import (
|
|
CompletionResponse,
|
|
CustomLLM,
|
|
LLMMetadata,
|
|
)
|
|
from llama_index.llms.base import llm_completion_callback
|
|
from llama_index.llms.llama_utils import (
|
|
completion_to_prompt as generic_completion_to_prompt,
|
|
)
|
|
from llama_index.llms.llama_utils import (
|
|
messages_to_prompt as generic_messages_to_prompt,
|
|
)
|
|
|
|
if TYPE_CHECKING:
|
|
from collections.abc import Callable
|
|
|
|
from llama_index.callbacks import CallbackManager
|
|
from llama_index.llms import (
|
|
CompletionResponseGen,
|
|
)
|
|
|
|
|
|
class LineIterator:
|
|
r"""A helper class for parsing the byte stream input from TGI container.
|
|
|
|
The output of the model will be in the following format:
|
|
```
|
|
b'data:{"token": {"text": " a"}}\n\n'
|
|
b'data:{"token": {"text": " challenging"}}\n\n'
|
|
b'data:{"token": {"text": " problem"
|
|
b'}}'
|
|
...
|
|
```
|
|
|
|
While usually each PayloadPart event from the event stream will contain a byte array
|
|
with a full json, this is not guaranteed and some of the json objects may be split
|
|
across PayloadPart events. For example:
|
|
```
|
|
{'PayloadPart': {'Bytes': b'{"outputs": '}}
|
|
{'PayloadPart': {'Bytes': b'[" problem"]}\n'}}
|
|
```
|
|
|
|
|
|
This class accounts for this by concatenating bytes written via the 'write' function
|
|
and then exposing a method which will return lines (ending with a '\n' character)
|
|
within the buffer via the 'scan_lines' function. It maintains the position of the
|
|
last read position to ensure that previous bytes are not exposed again. It will
|
|
also save any pending lines that doe not end with a '\n' to make sure truncations
|
|
are concatinated
|
|
"""
|
|
|
|
def __init__(self, stream: Any) -> None:
|
|
"""Line iterator initializer."""
|
|
self.byte_iterator = iter(stream)
|
|
self.buffer = io.BytesIO()
|
|
self.read_pos = 0
|
|
|
|
def __iter__(self) -> Any:
|
|
"""Self iterator."""
|
|
return self
|
|
|
|
def __next__(self) -> Any:
|
|
"""Next element from iterator."""
|
|
while True:
|
|
self.buffer.seek(self.read_pos)
|
|
line = self.buffer.readline()
|
|
if line and line[-1] == ord("\n"):
|
|
self.read_pos += len(line)
|
|
return line[:-1]
|
|
try:
|
|
chunk = next(self.byte_iterator)
|
|
except StopIteration:
|
|
if self.read_pos < self.buffer.getbuffer().nbytes:
|
|
continue
|
|
raise
|
|
if "PayloadPart" not in chunk:
|
|
print("Unknown event type:" + chunk)
|
|
continue
|
|
self.buffer.seek(0, io.SEEK_END)
|
|
self.buffer.write(chunk["PayloadPart"]["Bytes"])
|
|
|
|
|
|
class SagemakerLLM(CustomLLM):
|
|
"""Sagemaker Inference Endpoint models.
|
|
|
|
To use, you must supply the endpoint name from your deployed
|
|
Sagemaker model & the region where it is deployed.
|
|
|
|
To authenticate, the AWS client uses the following methods to
|
|
automatically load credentials:
|
|
https://boto3.amazonaws.com/v1/documentation/api/latest/guide/credentials.html
|
|
|
|
If a specific credential profile should be used, you must pass
|
|
the name of the profile from the ~/.aws/credentials file that is to be used.
|
|
|
|
Make sure the credentials / roles used have the required policies to
|
|
access the Sagemaker endpoint.
|
|
See: https://docs.aws.amazon.com/IAM/latest/UserGuide/access_policies.html
|
|
"""
|
|
|
|
endpoint_name: str = Field(description="")
|
|
temperature: float = Field(description="The temperature to use for sampling.")
|
|
max_new_tokens: int = Field(description="The maximum number of tokens to generate.")
|
|
context_window: int = Field(
|
|
description="The maximum number of context tokens for the model."
|
|
)
|
|
messages_to_prompt: Callable[..., str] = Field(
|
|
description="The function to convert messages to a prompt.", exclude=True
|
|
)
|
|
completion_to_prompt: Callable[..., str] = Field(
|
|
description="The function to convert a completion to a prompt.", exclude=True
|
|
)
|
|
generate_kwargs: dict[str, Any] = Field(
|
|
default_factory=dict, description="Kwargs used for generation."
|
|
)
|
|
model_kwargs: dict[str, Any] = Field(
|
|
default_factory=dict, description="Kwargs used for model initialization."
|
|
)
|
|
verbose: bool = Field(description="Whether to print verbose output.")
|
|
|
|
_boto_client: Any = boto3.client(
|
|
"sagemaker-runtime",
|
|
) # TODO make it an optional field
|
|
|
|
def __init__(
|
|
self,
|
|
endpoint_name: str | None = "",
|
|
temperature: float = 0.1,
|
|
max_new_tokens: int = 512, # to review defaults
|
|
context_window: int = 2048, # to review defaults
|
|
messages_to_prompt: Any = None,
|
|
completion_to_prompt: Any = None,
|
|
callback_manager: CallbackManager | None = None,
|
|
generate_kwargs: dict[str, Any] | None = None,
|
|
model_kwargs: dict[str, Any] | None = None,
|
|
verbose: bool = True,
|
|
) -> None:
|
|
"""SagemakerLLM initializer."""
|
|
model_kwargs = model_kwargs or {}
|
|
model_kwargs.update({"n_ctx": context_window, "verbose": verbose})
|
|
|
|
messages_to_prompt = messages_to_prompt or generic_messages_to_prompt
|
|
completion_to_prompt = completion_to_prompt or generic_completion_to_prompt
|
|
|
|
generate_kwargs = generate_kwargs or {}
|
|
generate_kwargs.update(
|
|
{"temperature": temperature, "max_tokens": max_new_tokens}
|
|
)
|
|
|
|
super().__init__(
|
|
endpoint_name=endpoint_name,
|
|
temperature=temperature,
|
|
context_window=context_window,
|
|
max_new_tokens=max_new_tokens,
|
|
messages_to_prompt=messages_to_prompt,
|
|
completion_to_prompt=completion_to_prompt,
|
|
callback_manager=callback_manager,
|
|
generate_kwargs=generate_kwargs,
|
|
model_kwargs=model_kwargs,
|
|
verbose=verbose,
|
|
)
|
|
|
|
@property
|
|
def inference_params(self):
|
|
# TODO expose the rest of params
|
|
return {
|
|
"do_sample": True,
|
|
"top_p": 0.7,
|
|
"temperature": self.temperature,
|
|
"top_k": 50,
|
|
"max_new_tokens": self.max_new_tokens,
|
|
}
|
|
|
|
@property
|
|
def metadata(self) -> LLMMetadata:
|
|
"""Get LLM metadata."""
|
|
return LLMMetadata(
|
|
context_window=self.context_window,
|
|
num_output=self.max_new_tokens,
|
|
model_name="Sagemaker LLama 2",
|
|
)
|
|
|
|
@llm_completion_callback()
|
|
def complete(self, prompt: str, **kwargs: Any) -> CompletionResponse:
|
|
self.generate_kwargs.update({"stream": False})
|
|
|
|
is_formatted = kwargs.pop("formatted", False)
|
|
if not is_formatted:
|
|
prompt = self.completion_to_prompt(prompt)
|
|
|
|
request_params = {
|
|
"inputs": prompt,
|
|
"stream": False,
|
|
"parameters": self.inference_params,
|
|
}
|
|
|
|
resp = self._boto_client.invoke_endpoint(
|
|
EndpointName=self.endpoint_name,
|
|
Body=json.dumps(request_params),
|
|
ContentType="application/json",
|
|
)
|
|
|
|
response_body = resp["Body"]
|
|
response_str = response_body.read().decode("utf-8")
|
|
response_dict = eval(response_str)
|
|
|
|
return CompletionResponse(
|
|
text=response_dict[0]["generated_text"][len(prompt) :], raw=resp
|
|
)
|
|
|
|
@llm_completion_callback()
|
|
def stream_complete(self, prompt: str, **kwargs: Any) -> CompletionResponseGen:
|
|
def get_stream():
|
|
text = ""
|
|
|
|
request_params = {
|
|
"inputs": prompt,
|
|
"stream": True,
|
|
"parameters": self.inference_params,
|
|
}
|
|
resp = self._boto_client.invoke_endpoint_with_response_stream(
|
|
EndpointName=self.endpoint_name,
|
|
Body=json.dumps(request_params),
|
|
ContentType="application/json",
|
|
)
|
|
|
|
event_stream = resp["Body"]
|
|
start_json = b"{"
|
|
stop_token = "<|endoftext|>"
|
|
|
|
for line in LineIterator(event_stream):
|
|
if line != b"" and start_json in line:
|
|
data = json.loads(line[line.find(start_json) :].decode("utf-8"))
|
|
if data["token"]["text"] != stop_token:
|
|
delta = data["token"]["text"]
|
|
text += delta
|
|
yield CompletionResponse(delta=delta, text=text, raw=data)
|
|
|
|
return get_stream()
|