privateGPT/private_gpt/main.py
Pablo Orgaz 51cc638758
Next version of PrivateGPT (#1077)
* Dockerize private-gpt

* Use port 8001 for local development

* Add setup script

* Add CUDA Dockerfile

* Create README.md

* Make the API use OpenAI response format

* Truncate prompt

* refactor: add models and __pycache__ to .gitignore

* Better naming

* Update readme

* Move models ignore to it's folder

* Add scaffolding

* Apply formatting

* Fix tests

* Working sagemaker custom llm

* Fix linting

* Fix linting

* Enable streaming

* Allow all 3.11 python versions

* Use llama 2 prompt format and fix completion

* Restructure (#3)

Co-authored-by: Pablo Orgaz <pablo@Pablos-MacBook-Pro.local>

* Fix Dockerfile

* Use a specific build stage

* Cleanup

* Add FastAPI skeleton

* Cleanup openai package

* Fix DI and tests

* Split tests and tests with coverage

* Remove old scaffolding

* Add settings logic (#4)

* Add settings logic

* Add settings for sagemaker

---------

Co-authored-by: Pablo Orgaz <pablo@Pablos-MacBook-Pro.local>

* Local LLM (#5)

* Add settings logic

* Add settings for sagemaker

* Add settings-local-example.yaml

* Delete terraform files

* Refactor tests to use fixtures

* Join deltas

* Add local model support

---------

Co-authored-by: Pablo Orgaz <pablo@Pablos-MacBook-Pro.local>

* Update README.md

* Fix tests

* Version bump

* Enable simple llamaindex observability (#6)

* Enable simple llamaindex observability

* Improve code through linting

* Update README.md

* Move to async (#7)

* Migrate implementation to use asyncio

* Formatting

* Cleanup

* Linting

---------

Co-authored-by: Pablo Orgaz <pablo@Pablos-MacBook-Pro.local>

* Query Docs and gradio UI

* Remove unnecessary files

* Git ignore chromadb folder

* Async migration + DI Cleanup

* Fix tests

* Add integration test

* Use fastapi responses

* Retrieval service with partial implementation

* Cleanup

* Run formatter

* Fix types

* Fetch nodes asynchronously

* Install local dependencies in tests

* Install ui dependencies in tests

* Install dependencies for llama-cpp

* Fix sudo

* Attempt to fix cuda issues

* Attempt to fix cuda issues

* Try to reclaim some space from ubuntu machine

* Retrieval with context

* Fix lint and imports

* Fix mypy

* Make retrieval API a POST

* Make Completions body a dataclass

* Fix LLM chat message order

* Add Query Chunks to Gradio UI

* Improve rag query prompt

* Rollback CI Changes

* Move to sync code

* Using Llamaindex abstraction for query retrieval

* Fix types

* Default to CONDENSED chat mode for contextualized chat

* Rename route function

* Add Chat endpoint

* Remove webhooks

* Add IntelliJ run config to gitignore

* .gitignore applied

* Sync chat completion

* Refactor total

* Typo in context_files.py

* Add embeddings component and service

* Remove wrong dataclass from IngestService

* Filter by context file id implementation

* Fix typing

* Implement context_filter and separate from the bool use_context in the API

* Change chunks api to avoid conceptual class of the context concept

* Deprecate completions and fix tests

* Remove remaining dataclasses

* Use embedding component in ingest service

* Fix ingestion to have multipart and local upload

* Fix ingestion API

* Add chunk tests

* Add configurable paths

* Cleaning up

* Add more docs

* IngestResponse includes a list of IngestedDocs

* Use IngestedDoc in the Chunk document reference

* Rename ingest routes to ingest_router.py

* Fix test working directory for intellij

* Set testpaths for pytest

* Remove unused as_chat_engine

* Add .fleet ide to gitignore

* Make LLM and Embedding model configurable

* Fix imports and checks

* Let local_data folder exist empty in the repository

* Don't use certain metadata in LLM

* Remove long lines

* Fix windows installation

* Typos

* Update poetry.lock

* Add TODO for linux

* Script and first version of docs

* No jekill build

* Fix relative url to openapi json

* Change default docs values

* Move chromadb dependency to the general group

* Fix tests to use separate local_data

* Create CNAME

* Update CNAME

* Fix openapi.json relative path

* PrivateGPT logo

* WIP OpenAPI documentation metadata

* Add ingest script (#11)

* Add ingest script

* Fix broken name refactor

* Add ingest docs and Makefile script

* Linting

* Move transformers to main dependency

* Move torch to main dependencies

* Don't load HuggingFaceEmbedding in tests

* Fix lint

---------

Co-authored-by: Pablo Orgaz <pablo@Pablos-MacBook-Pro.local>

* Rename file to camel_case

* Commit settings-local.yaml

* Move documentation to public docs

* Fix docker image for linux

* Installation and Running the Server documentation

* Move back to docs folder, as it is the only supported by github pages

* Delete CNAME

* Create CNAME

* Delete CNAME

* Create CNAME

* Improved API documentation

* Fix lint

* Completions documentation

* Updated openapi scheme

* Ingestion API doc

* Minor doc changes

* Updated openapi scheme

* Chunks API documentation

* Embeddings and Health API, and homogeneous responses

* Revamp README with new skeleton of content

* More docs

* PrivateGPT logo

* Improve UI

* Update ingestion docu

* Update README with new sections

* Use context window in the retriever

* Gradio Documentation

* Add logo to UI

* Include Contributing and Community sections to README

* Update links to resources in the README

* Small README.md updates

* Wrap lines of README.md

* Don't put health under /v1

* Add copy button to Chat

* Architecture documentation

* Updated openapi.json

* Updated openapi.json

* Updated openapi.json

* Change UI label

* Update documentation

* Add releases link to README.md

* Gradio avatar and stop debug

* Readme update

* Clean old files

* Remove unused terraform checks

* Update twitter link.

* Disable minimum coverage

* Clean install message in README.md

---------

Co-authored-by: Pablo Orgaz <pablo@Pablos-MacBook-Pro.local>
Co-authored-by: Iván Martínez <ivanmartit@gmail.com>
Co-authored-by: RubenGuerrero <ruben.guerrero@boopos.com>
Co-authored-by: Daniel Gallego Vico <daniel.gallego@bq.com>
2023-10-19 16:04:35 +02:00

126 lines
4.2 KiB
Python

"""FastAPI app creation, logger configuration and main API routes."""
import sys
from typing import Any
import llama_index
from fastapi import FastAPI
from fastapi.openapi.utils import get_openapi
from loguru import logger
from private_gpt.paths import docs_path
from private_gpt.server.chat.chat_router import chat_router
from private_gpt.server.chunks.chunks_router import chunks_router
from private_gpt.server.completions.completions_router import completions_router
from private_gpt.server.embeddings.embeddings_router import embeddings_router
from private_gpt.server.health.health_router import health_router
from private_gpt.server.ingest.ingest_router import ingest_router
from private_gpt.settings.settings import settings
# Remove pre-configured logging handler
logger.remove(0)
# Create a new logging handler same as the pre-configured one but with the extra
# attribute `request_id`
logger.add(
sys.stdout,
level="INFO",
format=(
"<green>{time:YYYY-MM-DD HH:mm:ss.SSS}</green> | "
"<level>{level: <8}</level> | "
"<cyan>{name}</cyan>:<cyan>{function}</cyan>:<cyan>{line}</cyan> | "
"ID: {extra[request_id]} - <level>{message}</level>"
),
)
# Add LlamaIndex simple observability
llama_index.set_global_handler("simple")
# Start the API
with open(docs_path / "description.md") as description_file:
description = description_file.read()
tags_metadata = [
{
"name": "Ingestion",
"description": "High-level APIs covering document ingestion -internally "
"managing document parsing, splitting,"
"metadata extraction, embedding generation and storage- and ingested "
"documents CRUD."
"Each ingested document is identified by an ID that can be used to filter the "
"context"
"used in *Contextual Completions* and *Context Chunks* APIs.",
},
{
"name": "Contextual Completions",
"description": "High-level APIs covering contextual Chat and Completions. They "
"follow OpenAI's format, extending it to "
"allow using the context coming from ingested documents to create the "
"response. Internally"
"manage context retrieval, prompt engineering and the response generation.",
},
{
"name": "Context Chunks",
"description": "Low-level API that given a query return relevant chunks of "
"text coming from the ingested"
"documents.",
},
{
"name": "Embeddings",
"description": "Low-level API to obtain the vector representation of a given "
"text, using an Embeddings model."
"Follows OpenAI's embeddings API format.",
},
{
"name": "Health",
"description": "Simple health API to make sure the server is up and running.",
},
]
app = FastAPI()
def custom_openapi() -> dict[str, Any]:
if app.openapi_schema:
return app.openapi_schema
openapi_schema = get_openapi(
title="PrivateGPT",
description=description,
version="0.1.0",
summary="PrivateGPT is a production-ready AI project that allows you to "
"ask questions to your documents using the power of Large Language "
"Models (LLMs), even in scenarios without Internet connection. "
"100% private, no data leaves your execution environment at any point.",
contact={
"url": "https://github.com/imartinez/privateGPT",
},
license_info={
"name": "Apache 2.0",
"url": "https://www.apache.org/licenses/LICENSE-2.0.html",
},
routes=app.routes,
tags=tags_metadata,
)
openapi_schema["info"]["x-logo"] = {
"url": "https://lh3.googleusercontent.com/drive-viewer"
"/AK7aPaD_iNlMoTquOBsw4boh4tIYxyEuhz6EtEs8nzq3yNkNAK00xGj"
"E1KUCmPJSk3TYOjcs6tReG6w_cLu1S7L_gPgT9z52iw=s2560"
}
app.openapi_schema = openapi_schema
return app.openapi_schema
app.openapi = custom_openapi # type: ignore[method-assign]
app.include_router(completions_router)
app.include_router(chat_router)
app.include_router(chunks_router)
app.include_router(ingest_router)
app.include_router(embeddings_router)
app.include_router(health_router)
if settings.ui.enabled:
from private_gpt.ui.ui import mount_in_app
mount_in_app(app)