mirror of
https://github.com/imartinez/privateGPT.git
synced 2025-04-27 19:28:38 +00:00
* Dockerize private-gpt * Use port 8001 for local development * Add setup script * Add CUDA Dockerfile * Create README.md * Make the API use OpenAI response format * Truncate prompt * refactor: add models and __pycache__ to .gitignore * Better naming * Update readme * Move models ignore to it's folder * Add scaffolding * Apply formatting * Fix tests * Working sagemaker custom llm * Fix linting * Fix linting * Enable streaming * Allow all 3.11 python versions * Use llama 2 prompt format and fix completion * Restructure (#3) Co-authored-by: Pablo Orgaz <pablo@Pablos-MacBook-Pro.local> * Fix Dockerfile * Use a specific build stage * Cleanup * Add FastAPI skeleton * Cleanup openai package * Fix DI and tests * Split tests and tests with coverage * Remove old scaffolding * Add settings logic (#4) * Add settings logic * Add settings for sagemaker --------- Co-authored-by: Pablo Orgaz <pablo@Pablos-MacBook-Pro.local> * Local LLM (#5) * Add settings logic * Add settings for sagemaker * Add settings-local-example.yaml * Delete terraform files * Refactor tests to use fixtures * Join deltas * Add local model support --------- Co-authored-by: Pablo Orgaz <pablo@Pablos-MacBook-Pro.local> * Update README.md * Fix tests * Version bump * Enable simple llamaindex observability (#6) * Enable simple llamaindex observability * Improve code through linting * Update README.md * Move to async (#7) * Migrate implementation to use asyncio * Formatting * Cleanup * Linting --------- Co-authored-by: Pablo Orgaz <pablo@Pablos-MacBook-Pro.local> * Query Docs and gradio UI * Remove unnecessary files * Git ignore chromadb folder * Async migration + DI Cleanup * Fix tests * Add integration test * Use fastapi responses * Retrieval service with partial implementation * Cleanup * Run formatter * Fix types * Fetch nodes asynchronously * Install local dependencies in tests * Install ui dependencies in tests * Install dependencies for llama-cpp * Fix sudo * Attempt to fix cuda issues * Attempt to fix cuda issues * Try to reclaim some space from ubuntu machine * Retrieval with context * Fix lint and imports * Fix mypy * Make retrieval API a POST * Make Completions body a dataclass * Fix LLM chat message order * Add Query Chunks to Gradio UI * Improve rag query prompt * Rollback CI Changes * Move to sync code * Using Llamaindex abstraction for query retrieval * Fix types * Default to CONDENSED chat mode for contextualized chat * Rename route function * Add Chat endpoint * Remove webhooks * Add IntelliJ run config to gitignore * .gitignore applied * Sync chat completion * Refactor total * Typo in context_files.py * Add embeddings component and service * Remove wrong dataclass from IngestService * Filter by context file id implementation * Fix typing * Implement context_filter and separate from the bool use_context in the API * Change chunks api to avoid conceptual class of the context concept * Deprecate completions and fix tests * Remove remaining dataclasses * Use embedding component in ingest service * Fix ingestion to have multipart and local upload * Fix ingestion API * Add chunk tests * Add configurable paths * Cleaning up * Add more docs * IngestResponse includes a list of IngestedDocs * Use IngestedDoc in the Chunk document reference * Rename ingest routes to ingest_router.py * Fix test working directory for intellij * Set testpaths for pytest * Remove unused as_chat_engine * Add .fleet ide to gitignore * Make LLM and Embedding model configurable * Fix imports and checks * Let local_data folder exist empty in the repository * Don't use certain metadata in LLM * Remove long lines * Fix windows installation * Typos * Update poetry.lock * Add TODO for linux * Script and first version of docs * No jekill build * Fix relative url to openapi json * Change default docs values * Move chromadb dependency to the general group * Fix tests to use separate local_data * Create CNAME * Update CNAME * Fix openapi.json relative path * PrivateGPT logo * WIP OpenAPI documentation metadata * Add ingest script (#11) * Add ingest script * Fix broken name refactor * Add ingest docs and Makefile script * Linting * Move transformers to main dependency * Move torch to main dependencies * Don't load HuggingFaceEmbedding in tests * Fix lint --------- Co-authored-by: Pablo Orgaz <pablo@Pablos-MacBook-Pro.local> * Rename file to camel_case * Commit settings-local.yaml * Move documentation to public docs * Fix docker image for linux * Installation and Running the Server documentation * Move back to docs folder, as it is the only supported by github pages * Delete CNAME * Create CNAME * Delete CNAME * Create CNAME * Improved API documentation * Fix lint * Completions documentation * Updated openapi scheme * Ingestion API doc * Minor doc changes * Updated openapi scheme * Chunks API documentation * Embeddings and Health API, and homogeneous responses * Revamp README with new skeleton of content * More docs * PrivateGPT logo * Improve UI * Update ingestion docu * Update README with new sections * Use context window in the retriever * Gradio Documentation * Add logo to UI * Include Contributing and Community sections to README * Update links to resources in the README * Small README.md updates * Wrap lines of README.md * Don't put health under /v1 * Add copy button to Chat * Architecture documentation * Updated openapi.json * Updated openapi.json * Updated openapi.json * Change UI label * Update documentation * Add releases link to README.md * Gradio avatar and stop debug * Readme update * Clean old files * Remove unused terraform checks * Update twitter link. * Disable minimum coverage * Clean install message in README.md --------- Co-authored-by: Pablo Orgaz <pablo@Pablos-MacBook-Pro.local> Co-authored-by: Iván Martínez <ivanmartit@gmail.com> Co-authored-by: RubenGuerrero <ruben.guerrero@boopos.com> Co-authored-by: Daniel Gallego Vico <daniel.gallego@bq.com>
126 lines
4.2 KiB
Python
126 lines
4.2 KiB
Python
"""FastAPI app creation, logger configuration and main API routes."""
|
|
import sys
|
|
from typing import Any
|
|
|
|
import llama_index
|
|
from fastapi import FastAPI
|
|
from fastapi.openapi.utils import get_openapi
|
|
from loguru import logger
|
|
|
|
from private_gpt.paths import docs_path
|
|
from private_gpt.server.chat.chat_router import chat_router
|
|
from private_gpt.server.chunks.chunks_router import chunks_router
|
|
from private_gpt.server.completions.completions_router import completions_router
|
|
from private_gpt.server.embeddings.embeddings_router import embeddings_router
|
|
from private_gpt.server.health.health_router import health_router
|
|
from private_gpt.server.ingest.ingest_router import ingest_router
|
|
from private_gpt.settings.settings import settings
|
|
|
|
# Remove pre-configured logging handler
|
|
logger.remove(0)
|
|
# Create a new logging handler same as the pre-configured one but with the extra
|
|
# attribute `request_id`
|
|
logger.add(
|
|
sys.stdout,
|
|
level="INFO",
|
|
format=(
|
|
"<green>{time:YYYY-MM-DD HH:mm:ss.SSS}</green> | "
|
|
"<level>{level: <8}</level> | "
|
|
"<cyan>{name}</cyan>:<cyan>{function}</cyan>:<cyan>{line}</cyan> | "
|
|
"ID: {extra[request_id]} - <level>{message}</level>"
|
|
),
|
|
)
|
|
|
|
# Add LlamaIndex simple observability
|
|
llama_index.set_global_handler("simple")
|
|
|
|
# Start the API
|
|
with open(docs_path / "description.md") as description_file:
|
|
description = description_file.read()
|
|
|
|
tags_metadata = [
|
|
{
|
|
"name": "Ingestion",
|
|
"description": "High-level APIs covering document ingestion -internally "
|
|
"managing document parsing, splitting,"
|
|
"metadata extraction, embedding generation and storage- and ingested "
|
|
"documents CRUD."
|
|
"Each ingested document is identified by an ID that can be used to filter the "
|
|
"context"
|
|
"used in *Contextual Completions* and *Context Chunks* APIs.",
|
|
},
|
|
{
|
|
"name": "Contextual Completions",
|
|
"description": "High-level APIs covering contextual Chat and Completions. They "
|
|
"follow OpenAI's format, extending it to "
|
|
"allow using the context coming from ingested documents to create the "
|
|
"response. Internally"
|
|
"manage context retrieval, prompt engineering and the response generation.",
|
|
},
|
|
{
|
|
"name": "Context Chunks",
|
|
"description": "Low-level API that given a query return relevant chunks of "
|
|
"text coming from the ingested"
|
|
"documents.",
|
|
},
|
|
{
|
|
"name": "Embeddings",
|
|
"description": "Low-level API to obtain the vector representation of a given "
|
|
"text, using an Embeddings model."
|
|
"Follows OpenAI's embeddings API format.",
|
|
},
|
|
{
|
|
"name": "Health",
|
|
"description": "Simple health API to make sure the server is up and running.",
|
|
},
|
|
]
|
|
|
|
app = FastAPI()
|
|
|
|
|
|
def custom_openapi() -> dict[str, Any]:
|
|
if app.openapi_schema:
|
|
return app.openapi_schema
|
|
openapi_schema = get_openapi(
|
|
title="PrivateGPT",
|
|
description=description,
|
|
version="0.1.0",
|
|
summary="PrivateGPT is a production-ready AI project that allows you to "
|
|
"ask questions to your documents using the power of Large Language "
|
|
"Models (LLMs), even in scenarios without Internet connection. "
|
|
"100% private, no data leaves your execution environment at any point.",
|
|
contact={
|
|
"url": "https://github.com/imartinez/privateGPT",
|
|
},
|
|
license_info={
|
|
"name": "Apache 2.0",
|
|
"url": "https://www.apache.org/licenses/LICENSE-2.0.html",
|
|
},
|
|
routes=app.routes,
|
|
tags=tags_metadata,
|
|
)
|
|
openapi_schema["info"]["x-logo"] = {
|
|
"url": "https://lh3.googleusercontent.com/drive-viewer"
|
|
"/AK7aPaD_iNlMoTquOBsw4boh4tIYxyEuhz6EtEs8nzq3yNkNAK00xGj"
|
|
"E1KUCmPJSk3TYOjcs6tReG6w_cLu1S7L_gPgT9z52iw=s2560"
|
|
}
|
|
|
|
app.openapi_schema = openapi_schema
|
|
return app.openapi_schema
|
|
|
|
|
|
app.openapi = custom_openapi # type: ignore[method-assign]
|
|
|
|
app.include_router(completions_router)
|
|
app.include_router(chat_router)
|
|
app.include_router(chunks_router)
|
|
app.include_router(ingest_router)
|
|
app.include_router(embeddings_router)
|
|
app.include_router(health_router)
|
|
|
|
|
|
if settings.ui.enabled:
|
|
from private_gpt.ui.ui import mount_in_app
|
|
|
|
mount_in_app(app)
|