mirror of
https://github.com/imartinez/privateGPT.git
synced 2025-04-27 19:28:38 +00:00
* Dockerize private-gpt * Use port 8001 for local development * Add setup script * Add CUDA Dockerfile * Create README.md * Make the API use OpenAI response format * Truncate prompt * refactor: add models and __pycache__ to .gitignore * Better naming * Update readme * Move models ignore to it's folder * Add scaffolding * Apply formatting * Fix tests * Working sagemaker custom llm * Fix linting * Fix linting * Enable streaming * Allow all 3.11 python versions * Use llama 2 prompt format and fix completion * Restructure (#3) Co-authored-by: Pablo Orgaz <pablo@Pablos-MacBook-Pro.local> * Fix Dockerfile * Use a specific build stage * Cleanup * Add FastAPI skeleton * Cleanup openai package * Fix DI and tests * Split tests and tests with coverage * Remove old scaffolding * Add settings logic (#4) * Add settings logic * Add settings for sagemaker --------- Co-authored-by: Pablo Orgaz <pablo@Pablos-MacBook-Pro.local> * Local LLM (#5) * Add settings logic * Add settings for sagemaker * Add settings-local-example.yaml * Delete terraform files * Refactor tests to use fixtures * Join deltas * Add local model support --------- Co-authored-by: Pablo Orgaz <pablo@Pablos-MacBook-Pro.local> * Update README.md * Fix tests * Version bump * Enable simple llamaindex observability (#6) * Enable simple llamaindex observability * Improve code through linting * Update README.md * Move to async (#7) * Migrate implementation to use asyncio * Formatting * Cleanup * Linting --------- Co-authored-by: Pablo Orgaz <pablo@Pablos-MacBook-Pro.local> * Query Docs and gradio UI * Remove unnecessary files * Git ignore chromadb folder * Async migration + DI Cleanup * Fix tests * Add integration test * Use fastapi responses * Retrieval service with partial implementation * Cleanup * Run formatter * Fix types * Fetch nodes asynchronously * Install local dependencies in tests * Install ui dependencies in tests * Install dependencies for llama-cpp * Fix sudo * Attempt to fix cuda issues * Attempt to fix cuda issues * Try to reclaim some space from ubuntu machine * Retrieval with context * Fix lint and imports * Fix mypy * Make retrieval API a POST * Make Completions body a dataclass * Fix LLM chat message order * Add Query Chunks to Gradio UI * Improve rag query prompt * Rollback CI Changes * Move to sync code * Using Llamaindex abstraction for query retrieval * Fix types * Default to CONDENSED chat mode for contextualized chat * Rename route function * Add Chat endpoint * Remove webhooks * Add IntelliJ run config to gitignore * .gitignore applied * Sync chat completion * Refactor total * Typo in context_files.py * Add embeddings component and service * Remove wrong dataclass from IngestService * Filter by context file id implementation * Fix typing * Implement context_filter and separate from the bool use_context in the API * Change chunks api to avoid conceptual class of the context concept * Deprecate completions and fix tests * Remove remaining dataclasses * Use embedding component in ingest service * Fix ingestion to have multipart and local upload * Fix ingestion API * Add chunk tests * Add configurable paths * Cleaning up * Add more docs * IngestResponse includes a list of IngestedDocs * Use IngestedDoc in the Chunk document reference * Rename ingest routes to ingest_router.py * Fix test working directory for intellij * Set testpaths for pytest * Remove unused as_chat_engine * Add .fleet ide to gitignore * Make LLM and Embedding model configurable * Fix imports and checks * Let local_data folder exist empty in the repository * Don't use certain metadata in LLM * Remove long lines * Fix windows installation * Typos * Update poetry.lock * Add TODO for linux * Script and first version of docs * No jekill build * Fix relative url to openapi json * Change default docs values * Move chromadb dependency to the general group * Fix tests to use separate local_data * Create CNAME * Update CNAME * Fix openapi.json relative path * PrivateGPT logo * WIP OpenAPI documentation metadata * Add ingest script (#11) * Add ingest script * Fix broken name refactor * Add ingest docs and Makefile script * Linting * Move transformers to main dependency * Move torch to main dependencies * Don't load HuggingFaceEmbedding in tests * Fix lint --------- Co-authored-by: Pablo Orgaz <pablo@Pablos-MacBook-Pro.local> * Rename file to camel_case * Commit settings-local.yaml * Move documentation to public docs * Fix docker image for linux * Installation and Running the Server documentation * Move back to docs folder, as it is the only supported by github pages * Delete CNAME * Create CNAME * Delete CNAME * Create CNAME * Improved API documentation * Fix lint * Completions documentation * Updated openapi scheme * Ingestion API doc * Minor doc changes * Updated openapi scheme * Chunks API documentation * Embeddings and Health API, and homogeneous responses * Revamp README with new skeleton of content * More docs * PrivateGPT logo * Improve UI * Update ingestion docu * Update README with new sections * Use context window in the retriever * Gradio Documentation * Add logo to UI * Include Contributing and Community sections to README * Update links to resources in the README * Small README.md updates * Wrap lines of README.md * Don't put health under /v1 * Add copy button to Chat * Architecture documentation * Updated openapi.json * Updated openapi.json * Updated openapi.json * Change UI label * Update documentation * Add releases link to README.md * Gradio avatar and stop debug * Readme update * Clean old files * Remove unused terraform checks * Update twitter link. * Disable minimum coverage * Clean install message in README.md --------- Co-authored-by: Pablo Orgaz <pablo@Pablos-MacBook-Pro.local> Co-authored-by: Iván Martínez <ivanmartit@gmail.com> Co-authored-by: RubenGuerrero <ruben.guerrero@boopos.com> Co-authored-by: Daniel Gallego Vico <daniel.gallego@bq.com>
120 lines
4.3 KiB
Python
120 lines
4.3 KiB
Python
from typing import TYPE_CHECKING
|
|
|
|
from injector import inject, singleton
|
|
from llama_index import ServiceContext, StorageContext, VectorStoreIndex
|
|
from llama_index.schema import NodeWithScore
|
|
from pydantic import BaseModel, Field
|
|
|
|
from private_gpt.components.embedding.embedding_component import EmbeddingComponent
|
|
from private_gpt.components.llm.llm_component import LLMComponent
|
|
from private_gpt.components.node_store.node_store_component import NodeStoreComponent
|
|
from private_gpt.components.vector_store.vector_store_component import (
|
|
VectorStoreComponent,
|
|
)
|
|
from private_gpt.open_ai.extensions.context_filter import ContextFilter
|
|
from private_gpt.server.ingest.ingest_service import IngestedDoc
|
|
|
|
if TYPE_CHECKING:
|
|
from llama_index.schema import RelatedNodeInfo
|
|
|
|
|
|
class Chunk(BaseModel):
|
|
object: str = Field(enum=["context.chunk"])
|
|
score: float = Field(examples=[0.023])
|
|
document: IngestedDoc
|
|
text: str = Field(examples=["Outbound sales increased 20%, driven by new leads."])
|
|
previous_texts: list[str] | None = Field(
|
|
examples=[["SALES REPORT 2023", "Inbound didn't show major changes."]]
|
|
)
|
|
next_texts: list[str] | None = Field(
|
|
examples=[
|
|
[
|
|
"New leads came from Google Ads campaign.",
|
|
"The campaign was run by the Marketing Department",
|
|
]
|
|
]
|
|
)
|
|
|
|
|
|
@singleton
|
|
class ChunksService:
|
|
@inject
|
|
def __init__(
|
|
self,
|
|
llm_component: LLMComponent,
|
|
vector_store_component: VectorStoreComponent,
|
|
embedding_component: EmbeddingComponent,
|
|
node_store_component: NodeStoreComponent,
|
|
) -> None:
|
|
self.vector_store_component = vector_store_component
|
|
self.storage_context = StorageContext.from_defaults(
|
|
vector_store=vector_store_component.vector_store,
|
|
docstore=node_store_component.doc_store,
|
|
index_store=node_store_component.index_store,
|
|
)
|
|
self.query_service_context = ServiceContext.from_defaults(
|
|
llm=llm_component.llm, embed_model=embedding_component.embedding_model
|
|
)
|
|
|
|
def _get_sibling_nodes_text(
|
|
self, node_with_score: NodeWithScore, related_number: int, forward: bool = True
|
|
) -> list[str]:
|
|
explored_nodes_texts = []
|
|
current_node = node_with_score.node
|
|
for _ in range(related_number):
|
|
explored_node_info: RelatedNodeInfo | None = (
|
|
current_node.next_node if forward else current_node.prev_node
|
|
)
|
|
if explored_node_info is None:
|
|
break
|
|
|
|
explored_node = self.storage_context.docstore.get_node(
|
|
explored_node_info.node_id
|
|
)
|
|
|
|
explored_nodes_texts.append(explored_node.get_content())
|
|
current_node = explored_node
|
|
|
|
return explored_nodes_texts
|
|
|
|
def retrieve_relevant(
|
|
self,
|
|
text: str,
|
|
context_filter: ContextFilter | None = None,
|
|
limit: int = 10,
|
|
prev_next_chunks: int = 0,
|
|
) -> list[Chunk]:
|
|
index = VectorStoreIndex.from_vector_store(
|
|
self.vector_store_component.vector_store,
|
|
storage_context=self.storage_context,
|
|
service_context=self.query_service_context,
|
|
show_progress=True,
|
|
)
|
|
vector_index_retriever = self.vector_store_component.get_retriever(
|
|
index=index, context_filter=context_filter, similarity_top_k=limit
|
|
)
|
|
nodes = vector_index_retriever.retrieve(text)
|
|
nodes.sort(key=lambda n: n.score or 0.0, reverse=True)
|
|
|
|
retrieved_nodes = []
|
|
for node in nodes:
|
|
doc_id = node.node.ref_doc_id if node.node.ref_doc_id is not None else "-"
|
|
retrieved_nodes.append(
|
|
Chunk(
|
|
object="context.chunk",
|
|
score=node.score or 0.0,
|
|
document=IngestedDoc(
|
|
object="ingest.document",
|
|
doc_id=doc_id,
|
|
doc_metadata=node.metadata,
|
|
),
|
|
text=node.get_content(),
|
|
previous_texts=self._get_sibling_nodes_text(
|
|
node, prev_next_chunks, False
|
|
),
|
|
next_texts=self._get_sibling_nodes_text(node, prev_next_chunks),
|
|
)
|
|
)
|
|
|
|
return retrieved_nodes
|