privateGPT/private_gpt/ui/ui.py
Pablo Orgaz 51cc638758
Next version of PrivateGPT (#1077)
* Dockerize private-gpt

* Use port 8001 for local development

* Add setup script

* Add CUDA Dockerfile

* Create README.md

* Make the API use OpenAI response format

* Truncate prompt

* refactor: add models and __pycache__ to .gitignore

* Better naming

* Update readme

* Move models ignore to it's folder

* Add scaffolding

* Apply formatting

* Fix tests

* Working sagemaker custom llm

* Fix linting

* Fix linting

* Enable streaming

* Allow all 3.11 python versions

* Use llama 2 prompt format and fix completion

* Restructure (#3)

Co-authored-by: Pablo Orgaz <pablo@Pablos-MacBook-Pro.local>

* Fix Dockerfile

* Use a specific build stage

* Cleanup

* Add FastAPI skeleton

* Cleanup openai package

* Fix DI and tests

* Split tests and tests with coverage

* Remove old scaffolding

* Add settings logic (#4)

* Add settings logic

* Add settings for sagemaker

---------

Co-authored-by: Pablo Orgaz <pablo@Pablos-MacBook-Pro.local>

* Local LLM (#5)

* Add settings logic

* Add settings for sagemaker

* Add settings-local-example.yaml

* Delete terraform files

* Refactor tests to use fixtures

* Join deltas

* Add local model support

---------

Co-authored-by: Pablo Orgaz <pablo@Pablos-MacBook-Pro.local>

* Update README.md

* Fix tests

* Version bump

* Enable simple llamaindex observability (#6)

* Enable simple llamaindex observability

* Improve code through linting

* Update README.md

* Move to async (#7)

* Migrate implementation to use asyncio

* Formatting

* Cleanup

* Linting

---------

Co-authored-by: Pablo Orgaz <pablo@Pablos-MacBook-Pro.local>

* Query Docs and gradio UI

* Remove unnecessary files

* Git ignore chromadb folder

* Async migration + DI Cleanup

* Fix tests

* Add integration test

* Use fastapi responses

* Retrieval service with partial implementation

* Cleanup

* Run formatter

* Fix types

* Fetch nodes asynchronously

* Install local dependencies in tests

* Install ui dependencies in tests

* Install dependencies for llama-cpp

* Fix sudo

* Attempt to fix cuda issues

* Attempt to fix cuda issues

* Try to reclaim some space from ubuntu machine

* Retrieval with context

* Fix lint and imports

* Fix mypy

* Make retrieval API a POST

* Make Completions body a dataclass

* Fix LLM chat message order

* Add Query Chunks to Gradio UI

* Improve rag query prompt

* Rollback CI Changes

* Move to sync code

* Using Llamaindex abstraction for query retrieval

* Fix types

* Default to CONDENSED chat mode for contextualized chat

* Rename route function

* Add Chat endpoint

* Remove webhooks

* Add IntelliJ run config to gitignore

* .gitignore applied

* Sync chat completion

* Refactor total

* Typo in context_files.py

* Add embeddings component and service

* Remove wrong dataclass from IngestService

* Filter by context file id implementation

* Fix typing

* Implement context_filter and separate from the bool use_context in the API

* Change chunks api to avoid conceptual class of the context concept

* Deprecate completions and fix tests

* Remove remaining dataclasses

* Use embedding component in ingest service

* Fix ingestion to have multipart and local upload

* Fix ingestion API

* Add chunk tests

* Add configurable paths

* Cleaning up

* Add more docs

* IngestResponse includes a list of IngestedDocs

* Use IngestedDoc in the Chunk document reference

* Rename ingest routes to ingest_router.py

* Fix test working directory for intellij

* Set testpaths for pytest

* Remove unused as_chat_engine

* Add .fleet ide to gitignore

* Make LLM and Embedding model configurable

* Fix imports and checks

* Let local_data folder exist empty in the repository

* Don't use certain metadata in LLM

* Remove long lines

* Fix windows installation

* Typos

* Update poetry.lock

* Add TODO for linux

* Script and first version of docs

* No jekill build

* Fix relative url to openapi json

* Change default docs values

* Move chromadb dependency to the general group

* Fix tests to use separate local_data

* Create CNAME

* Update CNAME

* Fix openapi.json relative path

* PrivateGPT logo

* WIP OpenAPI documentation metadata

* Add ingest script (#11)

* Add ingest script

* Fix broken name refactor

* Add ingest docs and Makefile script

* Linting

* Move transformers to main dependency

* Move torch to main dependencies

* Don't load HuggingFaceEmbedding in tests

* Fix lint

---------

Co-authored-by: Pablo Orgaz <pablo@Pablos-MacBook-Pro.local>

* Rename file to camel_case

* Commit settings-local.yaml

* Move documentation to public docs

* Fix docker image for linux

* Installation and Running the Server documentation

* Move back to docs folder, as it is the only supported by github pages

* Delete CNAME

* Create CNAME

* Delete CNAME

* Create CNAME

* Improved API documentation

* Fix lint

* Completions documentation

* Updated openapi scheme

* Ingestion API doc

* Minor doc changes

* Updated openapi scheme

* Chunks API documentation

* Embeddings and Health API, and homogeneous responses

* Revamp README with new skeleton of content

* More docs

* PrivateGPT logo

* Improve UI

* Update ingestion docu

* Update README with new sections

* Use context window in the retriever

* Gradio Documentation

* Add logo to UI

* Include Contributing and Community sections to README

* Update links to resources in the README

* Small README.md updates

* Wrap lines of README.md

* Don't put health under /v1

* Add copy button to Chat

* Architecture documentation

* Updated openapi.json

* Updated openapi.json

* Updated openapi.json

* Change UI label

* Update documentation

* Add releases link to README.md

* Gradio avatar and stop debug

* Readme update

* Clean old files

* Remove unused terraform checks

* Update twitter link.

* Disable minimum coverage

* Clean install message in README.md

---------

Co-authored-by: Pablo Orgaz <pablo@Pablos-MacBook-Pro.local>
Co-authored-by: Iván Martínez <ivanmartit@gmail.com>
Co-authored-by: RubenGuerrero <ruben.guerrero@boopos.com>
Co-authored-by: Daniel Gallego Vico <daniel.gallego@bq.com>
2023-10-19 16:04:35 +02:00

167 lines
5.4 KiB
Python

import itertools
import json
from collections.abc import Iterable
from pathlib import Path
from typing import Any, TextIO
import gradio as gr # type: ignore
from fastapi import FastAPI
from gradio.themes.utils.colors import slate # type: ignore
from llama_index.llms import ChatMessage, ChatResponse, MessageRole
from private_gpt.di import root_injector
from private_gpt.server.chat.chat_service import ChatService
from private_gpt.server.chunks.chunks_service import ChunksService
from private_gpt.server.ingest.ingest_service import IngestService
from private_gpt.settings.settings import settings
from private_gpt.ui.images import logo_svg
ingest_service = root_injector.get(IngestService)
chat_service = root_injector.get(ChatService)
chunks_service = root_injector.get(ChunksService)
def _chat(message: str, history: list[list[str]], mode: str, *_: Any) -> Any:
def yield_deltas(stream: Iterable[ChatResponse | str]) -> Iterable[str]:
full_response: str = ""
for delta in stream:
if isinstance(delta, str):
full_response += str(delta)
elif isinstance(delta, ChatResponse):
full_response += delta.delta or ""
yield full_response
def build_history() -> list[ChatMessage]:
history_messages: list[ChatMessage] = list(
itertools.chain(
*[
[
ChatMessage(content=interaction[0], role=MessageRole.USER),
ChatMessage(content=interaction[1], role=MessageRole.ASSISTANT),
]
for interaction in history
]
)
)
# max 20 messages to try to avoid context overflow
return history_messages[:20]
new_message = ChatMessage(content=message, role=MessageRole.USER)
all_messages = [*build_history(), new_message]
match mode:
case "Query Documents":
query_stream = chat_service.stream_chat(
messages=all_messages,
use_context=True,
)
yield from yield_deltas(query_stream)
case "LLM Chat":
llm_stream = chat_service.stream_chat(
messages=all_messages,
use_context=False,
)
yield from yield_deltas(llm_stream)
case "Context Chunks":
response = chunks_service.retrieve_relevant(
text=message,
limit=2,
prev_next_chunks=1,
).__iter__()
yield "```" + json.dumps(
[node.__dict__ for node in response],
default=lambda o: o.__dict__,
indent=2,
)
def _list_ingested_files() -> list[str]:
files = set()
for ingested_document in ingest_service.list_ingested():
if ingested_document.doc_metadata is not None:
files.add(
ingested_document.doc_metadata.get("file_name") or "[FILE NAME MISSING]"
)
return list(files)
# Global state
_uploaded_file_list = [[row] for row in _list_ingested_files()]
def _upload_file(file: TextIO) -> list[list[str]]:
path = Path(file.name)
ingest_service.ingest(file_name=path.name, file_data=path)
_uploaded_file_list.append([path.name])
return _uploaded_file_list
with gr.Blocks(
theme=gr.themes.Soft(primary_hue=slate),
css=".logo { "
"display:flex;"
"background-color: #C7BAFF;"
"height: 80px;"
"border-radius: 8px;"
"align-content: center;"
"justify-content: center;"
"align-items: center;"
"}"
".logo img { height: 25% }",
) as blocks:
with gr.Blocks(), gr.Row():
gr.HTML(f"<div class='logo'/><img src={logo_svg} alt=PrivateGPT></div")
with gr.Row():
with gr.Column(scale=3, variant="compact"):
mode = gr.Radio(
["Query Documents", "LLM Chat", "Context Chunks"],
label="Mode",
value="Query Documents",
)
upload_button = gr.components.UploadButton(
"Upload a File",
type="file",
file_count="single",
size="sm",
)
ingested_dataset = gr.List(
_uploaded_file_list,
headers=["File name"],
label="Ingested Files",
interactive=False,
render=False, # Rendered under the button
)
upload_button.upload(
_upload_file, inputs=upload_button, outputs=ingested_dataset
)
ingested_dataset.render()
with gr.Column(scale=7):
chatbot = gr.ChatInterface(
_chat,
chatbot=gr.Chatbot(
label="Chat",
show_copy_button=True,
render=False,
avatar_images=(
None,
"https://lh3.googleusercontent.com/drive-viewer/AK7aPa"
"AicXck0k68nsscyfKrb18o9ak3BSaWM_Qzm338cKoQlw72Bp0UKN84"
"IFZjXjZApY01mtnUXDeL4qzwhkALoe_53AhwCg=s2560",
),
),
additional_inputs=[mode, upload_button],
)
def mount_in_app(app: FastAPI) -> None:
blocks.queue()
gr.mount_gradio_app(app, blocks, path=settings.ui.path)
if __name__ == "__main__":
blocks.queue()
blocks.launch(debug=False, show_api=False)