privateGPT/private_gpt/components/llm/llm_component.py
2024-02-09 15:50:50 +01:00

90 lines
3.3 KiB
Python

import logging
from injector import inject, singleton
from llama_index import set_global_tokenizer
from llama_index.llms import MockLLM
from llama_index.llms.base import LLM
from transformers import AutoTokenizer # type: ignore
from private_gpt.components.llm.prompt_helper import get_prompt_style
from private_gpt.paths import models_cache_path, models_path
from private_gpt.settings.settings import Settings
logger = logging.getLogger(__name__)
@singleton
class LLMComponent:
llm: LLM
@inject
def __init__(self, settings: Settings) -> None:
llm_mode = settings.llm.mode
if settings.llm.tokenizer:
set_global_tokenizer(
AutoTokenizer.from_pretrained(
pretrained_model_name_or_path=settings.llm.tokenizer,
cache_dir=str(models_cache_path),
)
)
logger.info("Initializing the LLM in mode=%s", llm_mode)
match settings.llm.mode:
case "local":
from llama_index.llms import LlamaCPP
prompt_style = get_prompt_style(settings.local.prompt_style)
self.llm = LlamaCPP(
model_path=str(models_path / settings.local.llm_hf_model_file),
temperature=0.1,
max_new_tokens=settings.llm.max_new_tokens,
context_window=settings.llm.context_window,
generate_kwargs={},
# All to GPU
model_kwargs={"n_gpu_layers": -1, "offload_kqv": True},
# transform inputs into Llama2 format
messages_to_prompt=prompt_style.messages_to_prompt,
completion_to_prompt=prompt_style.completion_to_prompt,
verbose=True,
)
case "sagemaker":
from private_gpt.components.llm.custom.sagemaker import SagemakerLLM
self.llm = SagemakerLLM(
endpoint_name=settings.sagemaker.llm_endpoint_name,
max_new_tokens=settings.llm.max_new_tokens,
context_window=settings.llm.context_window,
)
case "openai":
from llama_index.llms import OpenAI
openai_settings = settings.openai
self.llm = OpenAI(
api_base=openai_settings.api_base,
api_key=openai_settings.api_key,
model=openai_settings.model,
)
case "openailike":
from llama_index.llms import OpenAILike
openai_settings = settings.openai
self.llm = OpenAILike(
api_base=openai_settings.api_base,
api_key=openai_settings.api_key,
model=openai_settings.model,
is_chat_model=True,
max_tokens=None,
api_version="",
)
case "mock":
self.llm = MockLLM()
case "ollama":
from llama_index.llms import Ollama
ollama_settings = settings.ollama
self.llm = Ollama(
model=ollama_settings.model, base_url=ollama_settings.api_base
)