privateGPT/private_gpt/components/embedding/embedding_component.py
Iván Martínez ad512e3c42
Feature/sagemaker embedding (#1161)
* Sagemaker deployed embedding model support

---------

Co-authored-by: Pablo Orgaz <pabloogc@gmail.com>
2023-11-05 16:16:49 +01:00

41 lines
1.4 KiB
Python

from injector import inject, singleton
from llama_index import MockEmbedding
from llama_index.embeddings.base import BaseEmbedding
from private_gpt.paths import models_cache_path
from private_gpt.settings.settings import settings
@singleton
class EmbeddingComponent:
embedding_model: BaseEmbedding
@inject
def __init__(self) -> None:
match settings.llm.mode:
case "local":
from llama_index.embeddings import HuggingFaceEmbedding
self.embedding_model = HuggingFaceEmbedding(
model_name=settings.local.embedding_hf_model_name,
cache_folder=str(models_cache_path),
)
case "sagemaker":
from private_gpt.components.embedding.custom.sagemaker import (
SagemakerEmbedding,
)
self.embedding_model = SagemakerEmbedding(
endpoint_name=settings.sagemaker.embedding_endpoint_name,
)
case "openai":
from llama_index import OpenAIEmbedding
openai_settings = settings.openai.api_key
self.embedding_model = OpenAIEmbedding(api_key=openai_settings)
case "mock":
# Not a random number, is the dimensionality used by
# the default embedding model
self.embedding_model = MockEmbedding(384)