privateGPT/private_gpt/ui/ui.py
2023-10-19 19:21:29 +02:00

167 lines
5.4 KiB
Python

import itertools
import json
from collections.abc import Iterable
from pathlib import Path
from typing import Any, TextIO
import gradio as gr # type: ignore
from fastapi import FastAPI
from gradio.themes.utils.colors import slate # type: ignore
from llama_index.llms import ChatMessage, ChatResponse, MessageRole
from private_gpt.di import root_injector
from private_gpt.server.chat.chat_service import ChatService
from private_gpt.server.chunks.chunks_service import ChunksService
from private_gpt.server.ingest.ingest_service import IngestService
from private_gpt.settings.settings import settings
from private_gpt.ui.images import logo_svg
ingest_service = root_injector.get(IngestService)
chat_service = root_injector.get(ChatService)
chunks_service = root_injector.get(ChunksService)
def _chat(message: str, history: list[list[str]], mode: str, *_: Any) -> Any:
def yield_deltas(stream: Iterable[ChatResponse | str]) -> Iterable[str]:
full_response: str = ""
for delta in stream:
if isinstance(delta, str):
full_response += str(delta)
elif isinstance(delta, ChatResponse):
full_response += delta.delta or ""
yield full_response
def build_history() -> list[ChatMessage]:
history_messages: list[ChatMessage] = list(
itertools.chain(
*[
[
ChatMessage(content=interaction[0], role=MessageRole.USER),
ChatMessage(content=interaction[1], role=MessageRole.ASSISTANT),
]
for interaction in history
]
)
)
# max 20 messages to try to avoid context overflow
return history_messages[:20]
new_message = ChatMessage(content=message, role=MessageRole.USER)
all_messages = [*build_history(), new_message]
match mode:
case "Query Documents":
query_stream = chat_service.stream_chat(
messages=all_messages,
use_context=True,
)
yield from yield_deltas(query_stream)
case "LLM Chat":
llm_stream = chat_service.stream_chat(
messages=all_messages,
use_context=False,
)
yield from yield_deltas(llm_stream)
case "Context Chunks":
response = chunks_service.retrieve_relevant(
text=message,
limit=2,
prev_next_chunks=1,
).__iter__()
yield "```" + json.dumps(
[node.__dict__ for node in response],
default=lambda o: o.__dict__,
indent=2,
)
def _list_ingested_files() -> list[str]:
files = set()
for ingested_document in ingest_service.list_ingested():
if ingested_document.doc_metadata is not None:
files.add(
ingested_document.doc_metadata.get("file_name") or "[FILE NAME MISSING]"
)
return list(files)
# Global state
_uploaded_file_list = [[row] for row in _list_ingested_files()]
def _upload_file(file: TextIO) -> list[list[str]]:
path = Path(file.name)
ingest_service.ingest(file_name=path.name, file_data=path)
_uploaded_file_list.append([path.name])
return _uploaded_file_list
with gr.Blocks(
theme=gr.themes.Soft(primary_hue=slate),
css=".logo { "
"display:flex;"
"background-color: #C7BAFF;"
"height: 80px;"
"border-radius: 8px;"
"align-content: center;"
"justify-content: center;"
"align-items: center;"
"}"
".logo img { height: 25% }",
) as blocks:
with gr.Blocks(), gr.Row():
gr.HTML(f"<div class='logo'/><img src={logo_svg} alt=PrivateGPT></div")
with gr.Row():
with gr.Column(scale=3, variant="compact"):
mode = gr.Radio(
["Query Documents", "LLM Chat", "Context Chunks"],
label="Mode",
value="Query Documents",
)
upload_button = gr.components.UploadButton(
"Upload a File",
type="file",
file_count="single",
size="sm",
)
ingested_dataset = gr.List(
_uploaded_file_list,
headers=["File name"],
label="Ingested Files",
interactive=False,
render=False, # Rendered under the button
)
upload_button.upload(
_upload_file, inputs=upload_button, outputs=ingested_dataset
)
ingested_dataset.render()
with gr.Column(scale=7):
chatbot = gr.ChatInterface(
_chat,
chatbot=gr.Chatbot(
label=f"LLM: {settings.llm.mode}",
show_copy_button=True,
render=False,
avatar_images=(
None,
"https://lh3.googleusercontent.com/drive-viewer/AK7aPa"
"AicXck0k68nsscyfKrb18o9ak3BSaWM_Qzm338cKoQlw72Bp0UKN84"
"IFZjXjZApY01mtnUXDeL4qzwhkALoe_53AhwCg=s2560",
),
),
additional_inputs=[mode, upload_button],
)
def mount_in_app(app: FastAPI) -> None:
blocks.queue()
gr.mount_gradio_app(app, blocks, path=settings.ui.path)
if __name__ == "__main__":
blocks.queue()
blocks.launch(debug=False, show_api=False)