mirror of
https://github.com/imartinez/privateGPT.git
synced 2025-04-28 11:36:25 +00:00
167 lines
5.4 KiB
Python
167 lines
5.4 KiB
Python
import itertools
|
|
import json
|
|
from collections.abc import Iterable
|
|
from pathlib import Path
|
|
from typing import Any, TextIO
|
|
|
|
import gradio as gr # type: ignore
|
|
from fastapi import FastAPI
|
|
from gradio.themes.utils.colors import slate # type: ignore
|
|
from llama_index.llms import ChatMessage, ChatResponse, MessageRole
|
|
|
|
from private_gpt.di import root_injector
|
|
from private_gpt.server.chat.chat_service import ChatService
|
|
from private_gpt.server.chunks.chunks_service import ChunksService
|
|
from private_gpt.server.ingest.ingest_service import IngestService
|
|
from private_gpt.settings.settings import settings
|
|
from private_gpt.ui.images import logo_svg
|
|
|
|
ingest_service = root_injector.get(IngestService)
|
|
chat_service = root_injector.get(ChatService)
|
|
chunks_service = root_injector.get(ChunksService)
|
|
|
|
|
|
def _chat(message: str, history: list[list[str]], mode: str, *_: Any) -> Any:
|
|
def yield_deltas(stream: Iterable[ChatResponse | str]) -> Iterable[str]:
|
|
full_response: str = ""
|
|
for delta in stream:
|
|
if isinstance(delta, str):
|
|
full_response += str(delta)
|
|
elif isinstance(delta, ChatResponse):
|
|
full_response += delta.delta or ""
|
|
yield full_response
|
|
|
|
def build_history() -> list[ChatMessage]:
|
|
history_messages: list[ChatMessage] = list(
|
|
itertools.chain(
|
|
*[
|
|
[
|
|
ChatMessage(content=interaction[0], role=MessageRole.USER),
|
|
ChatMessage(content=interaction[1], role=MessageRole.ASSISTANT),
|
|
]
|
|
for interaction in history
|
|
]
|
|
)
|
|
)
|
|
|
|
# max 20 messages to try to avoid context overflow
|
|
return history_messages[:20]
|
|
|
|
new_message = ChatMessage(content=message, role=MessageRole.USER)
|
|
all_messages = [*build_history(), new_message]
|
|
match mode:
|
|
case "Query Documents":
|
|
query_stream = chat_service.stream_chat(
|
|
messages=all_messages,
|
|
use_context=True,
|
|
)
|
|
yield from yield_deltas(query_stream)
|
|
|
|
case "LLM Chat":
|
|
llm_stream = chat_service.stream_chat(
|
|
messages=all_messages,
|
|
use_context=False,
|
|
)
|
|
yield from yield_deltas(llm_stream)
|
|
|
|
case "Context Chunks":
|
|
response = chunks_service.retrieve_relevant(
|
|
text=message,
|
|
limit=2,
|
|
prev_next_chunks=1,
|
|
).__iter__()
|
|
yield "```" + json.dumps(
|
|
[node.__dict__ for node in response],
|
|
default=lambda o: o.__dict__,
|
|
indent=2,
|
|
)
|
|
|
|
|
|
def _list_ingested_files() -> list[str]:
|
|
files = set()
|
|
for ingested_document in ingest_service.list_ingested():
|
|
if ingested_document.doc_metadata is not None:
|
|
files.add(
|
|
ingested_document.doc_metadata.get("file_name") or "[FILE NAME MISSING]"
|
|
)
|
|
return list(files)
|
|
|
|
|
|
# Global state
|
|
_uploaded_file_list = [[row] for row in _list_ingested_files()]
|
|
|
|
|
|
def _upload_file(file: TextIO) -> list[list[str]]:
|
|
path = Path(file.name)
|
|
ingest_service.ingest(file_name=path.name, file_data=path)
|
|
_uploaded_file_list.append([path.name])
|
|
return _uploaded_file_list
|
|
|
|
|
|
with gr.Blocks(
|
|
theme=gr.themes.Soft(primary_hue=slate),
|
|
css=".logo { "
|
|
"display:flex;"
|
|
"background-color: #C7BAFF;"
|
|
"height: 80px;"
|
|
"border-radius: 8px;"
|
|
"align-content: center;"
|
|
"justify-content: center;"
|
|
"align-items: center;"
|
|
"}"
|
|
".logo img { height: 25% }",
|
|
) as blocks:
|
|
with gr.Blocks(), gr.Row():
|
|
gr.HTML(f"<div class='logo'/><img src={logo_svg} alt=PrivateGPT></div")
|
|
|
|
with gr.Row():
|
|
with gr.Column(scale=3, variant="compact"):
|
|
mode = gr.Radio(
|
|
["Query Documents", "LLM Chat", "Context Chunks"],
|
|
label="Mode",
|
|
value="Query Documents",
|
|
)
|
|
upload_button = gr.components.UploadButton(
|
|
"Upload a File",
|
|
type="file",
|
|
file_count="single",
|
|
size="sm",
|
|
)
|
|
ingested_dataset = gr.List(
|
|
_uploaded_file_list,
|
|
headers=["File name"],
|
|
label="Ingested Files",
|
|
interactive=False,
|
|
render=False, # Rendered under the button
|
|
)
|
|
upload_button.upload(
|
|
_upload_file, inputs=upload_button, outputs=ingested_dataset
|
|
)
|
|
ingested_dataset.render()
|
|
with gr.Column(scale=7):
|
|
chatbot = gr.ChatInterface(
|
|
_chat,
|
|
chatbot=gr.Chatbot(
|
|
label=f"LLM: {settings.llm.mode}",
|
|
show_copy_button=True,
|
|
render=False,
|
|
avatar_images=(
|
|
None,
|
|
"https://lh3.googleusercontent.com/drive-viewer/AK7aPa"
|
|
"AicXck0k68nsscyfKrb18o9ak3BSaWM_Qzm338cKoQlw72Bp0UKN84"
|
|
"IFZjXjZApY01mtnUXDeL4qzwhkALoe_53AhwCg=s2560",
|
|
),
|
|
),
|
|
additional_inputs=[mode, upload_button],
|
|
)
|
|
|
|
|
|
def mount_in_app(app: FastAPI) -> None:
|
|
blocks.queue()
|
|
gr.mount_gradio_app(app, blocks, path=settings.ui.path)
|
|
|
|
|
|
if __name__ == "__main__":
|
|
blocks.queue()
|
|
blocks.launch(debug=False, show_api=False)
|