mirror of
https://github.com/imartinez/privateGPT.git
synced 2025-04-27 11:21:34 +00:00
* Support for Google Gemini LLMs and Embeddings Initial support for Gemini, enables usage of Google LLMs and embedding models (see settings-gemini.yaml) Install via poetry install --extras "llms-gemini embeddings-gemini" Notes: * had to bump llama-index-core to later version that supports Gemini * poetry --no-update did not work: Gemini/llama_index seem to require more (transient) updates to make it work... * fix: crash when gemini is not selected * docs: add gemini llm --------- Co-authored-by: Javier Martinez <javiermartinezalvarez98@gmail.com>
499 lines
20 KiB
Python
499 lines
20 KiB
Python
"""This file should be imported if and only if you want to run the UI locally."""
|
|
|
|
import itertools
|
|
import logging
|
|
import time
|
|
from collections.abc import Iterable
|
|
from pathlib import Path
|
|
from typing import Any
|
|
|
|
import gradio as gr # type: ignore
|
|
from fastapi import FastAPI
|
|
from gradio.themes.utils.colors import slate # type: ignore
|
|
from injector import inject, singleton
|
|
from llama_index.core.llms import ChatMessage, ChatResponse, MessageRole
|
|
from pydantic import BaseModel
|
|
|
|
from private_gpt.constants import PROJECT_ROOT_PATH
|
|
from private_gpt.di import global_injector
|
|
from private_gpt.open_ai.extensions.context_filter import ContextFilter
|
|
from private_gpt.server.chat.chat_service import ChatService, CompletionGen
|
|
from private_gpt.server.chunks.chunks_service import Chunk, ChunksService
|
|
from private_gpt.server.ingest.ingest_service import IngestService
|
|
from private_gpt.settings.settings import settings
|
|
from private_gpt.ui.images import logo_svg
|
|
|
|
logger = logging.getLogger(__name__)
|
|
|
|
THIS_DIRECTORY_RELATIVE = Path(__file__).parent.relative_to(PROJECT_ROOT_PATH)
|
|
# Should be "private_gpt/ui/avatar-bot.ico"
|
|
AVATAR_BOT = THIS_DIRECTORY_RELATIVE / "avatar-bot.ico"
|
|
|
|
UI_TAB_TITLE = "My Private GPT"
|
|
|
|
SOURCES_SEPARATOR = "\n\n Sources: \n"
|
|
|
|
MODES = ["Query Files", "Search Files", "LLM Chat (no context from files)"]
|
|
|
|
|
|
class Source(BaseModel):
|
|
file: str
|
|
page: str
|
|
text: str
|
|
|
|
class Config:
|
|
frozen = True
|
|
|
|
@staticmethod
|
|
def curate_sources(sources: list[Chunk]) -> list["Source"]:
|
|
curated_sources = []
|
|
|
|
for chunk in sources:
|
|
doc_metadata = chunk.document.doc_metadata
|
|
|
|
file_name = doc_metadata.get("file_name", "-") if doc_metadata else "-"
|
|
page_label = doc_metadata.get("page_label", "-") if doc_metadata else "-"
|
|
|
|
source = Source(file=file_name, page=page_label, text=chunk.text)
|
|
curated_sources.append(source)
|
|
curated_sources = list(
|
|
dict.fromkeys(curated_sources).keys()
|
|
) # Unique sources only
|
|
|
|
return curated_sources
|
|
|
|
|
|
@singleton
|
|
class PrivateGptUi:
|
|
@inject
|
|
def __init__(
|
|
self,
|
|
ingest_service: IngestService,
|
|
chat_service: ChatService,
|
|
chunks_service: ChunksService,
|
|
) -> None:
|
|
self._ingest_service = ingest_service
|
|
self._chat_service = chat_service
|
|
self._chunks_service = chunks_service
|
|
|
|
# Cache the UI blocks
|
|
self._ui_block = None
|
|
|
|
self._selected_filename = None
|
|
|
|
# Initialize system prompt based on default mode
|
|
self.mode = MODES[0]
|
|
self._system_prompt = self._get_default_system_prompt(self.mode)
|
|
|
|
def _chat(self, message: str, history: list[list[str]], mode: str, *_: Any) -> Any:
|
|
def yield_deltas(completion_gen: CompletionGen) -> Iterable[str]:
|
|
full_response: str = ""
|
|
stream = completion_gen.response
|
|
for delta in stream:
|
|
if isinstance(delta, str):
|
|
full_response += str(delta)
|
|
elif isinstance(delta, ChatResponse):
|
|
full_response += delta.delta or ""
|
|
yield full_response
|
|
time.sleep(0.02)
|
|
|
|
if completion_gen.sources:
|
|
full_response += SOURCES_SEPARATOR
|
|
cur_sources = Source.curate_sources(completion_gen.sources)
|
|
sources_text = "\n\n\n"
|
|
used_files = set()
|
|
for index, source in enumerate(cur_sources, start=1):
|
|
if f"{source.file}-{source.page}" not in used_files:
|
|
sources_text = (
|
|
sources_text
|
|
+ f"{index}. {source.file} (page {source.page}) \n\n"
|
|
)
|
|
used_files.add(f"{source.file}-{source.page}")
|
|
full_response += sources_text
|
|
yield full_response
|
|
|
|
def build_history() -> list[ChatMessage]:
|
|
history_messages: list[ChatMessage] = list(
|
|
itertools.chain(
|
|
*[
|
|
[
|
|
ChatMessage(content=interaction[0], role=MessageRole.USER),
|
|
ChatMessage(
|
|
# Remove from history content the Sources information
|
|
content=interaction[1].split(SOURCES_SEPARATOR)[0],
|
|
role=MessageRole.ASSISTANT,
|
|
),
|
|
]
|
|
for interaction in history
|
|
]
|
|
)
|
|
)
|
|
|
|
# max 20 messages to try to avoid context overflow
|
|
return history_messages[:20]
|
|
|
|
new_message = ChatMessage(content=message, role=MessageRole.USER)
|
|
all_messages = [*build_history(), new_message]
|
|
# If a system prompt is set, add it as a system message
|
|
if self._system_prompt:
|
|
all_messages.insert(
|
|
0,
|
|
ChatMessage(
|
|
content=self._system_prompt,
|
|
role=MessageRole.SYSTEM,
|
|
),
|
|
)
|
|
match mode:
|
|
case "Query Files":
|
|
|
|
# Use only the selected file for the query
|
|
context_filter = None
|
|
if self._selected_filename is not None:
|
|
docs_ids = []
|
|
for ingested_document in self._ingest_service.list_ingested():
|
|
if (
|
|
ingested_document.doc_metadata["file_name"]
|
|
== self._selected_filename
|
|
):
|
|
docs_ids.append(ingested_document.doc_id)
|
|
context_filter = ContextFilter(docs_ids=docs_ids)
|
|
|
|
query_stream = self._chat_service.stream_chat(
|
|
messages=all_messages,
|
|
use_context=True,
|
|
context_filter=context_filter,
|
|
)
|
|
yield from yield_deltas(query_stream)
|
|
case "LLM Chat (no context from files)":
|
|
llm_stream = self._chat_service.stream_chat(
|
|
messages=all_messages,
|
|
use_context=False,
|
|
)
|
|
yield from yield_deltas(llm_stream)
|
|
|
|
case "Search Files":
|
|
response = self._chunks_service.retrieve_relevant(
|
|
text=message, limit=4, prev_next_chunks=0
|
|
)
|
|
|
|
sources = Source.curate_sources(response)
|
|
|
|
yield "\n\n\n".join(
|
|
f"{index}. **{source.file} "
|
|
f"(page {source.page})**\n "
|
|
f"{source.text}"
|
|
for index, source in enumerate(sources, start=1)
|
|
)
|
|
|
|
# On initialization and on mode change, this function set the system prompt
|
|
# to the default prompt based on the mode (and user settings).
|
|
@staticmethod
|
|
def _get_default_system_prompt(mode: str) -> str:
|
|
p = ""
|
|
match mode:
|
|
# For query chat mode, obtain default system prompt from settings
|
|
case "Query Files":
|
|
p = settings().ui.default_query_system_prompt
|
|
# For chat mode, obtain default system prompt from settings
|
|
case "LLM Chat (no context from files)":
|
|
p = settings().ui.default_chat_system_prompt
|
|
# For any other mode, clear the system prompt
|
|
case _:
|
|
p = ""
|
|
return p
|
|
|
|
def _set_system_prompt(self, system_prompt_input: str) -> None:
|
|
logger.info(f"Setting system prompt to: {system_prompt_input}")
|
|
self._system_prompt = system_prompt_input
|
|
|
|
def _set_current_mode(self, mode: str) -> Any:
|
|
self.mode = mode
|
|
self._set_system_prompt(self._get_default_system_prompt(mode))
|
|
# Update placeholder and allow interaction if default system prompt is set
|
|
if self._system_prompt:
|
|
return gr.update(placeholder=self._system_prompt, interactive=True)
|
|
# Update placeholder and disable interaction if no default system prompt is set
|
|
else:
|
|
return gr.update(placeholder=self._system_prompt, interactive=False)
|
|
|
|
def _list_ingested_files(self) -> list[list[str]]:
|
|
files = set()
|
|
for ingested_document in self._ingest_service.list_ingested():
|
|
if ingested_document.doc_metadata is None:
|
|
# Skipping documents without metadata
|
|
continue
|
|
file_name = ingested_document.doc_metadata.get(
|
|
"file_name", "[FILE NAME MISSING]"
|
|
)
|
|
files.add(file_name)
|
|
return [[row] for row in files]
|
|
|
|
def _upload_file(self, files: list[str]) -> None:
|
|
logger.debug("Loading count=%s files", len(files))
|
|
paths = [Path(file) for file in files]
|
|
|
|
# remove all existing Documents with name identical to a new file upload:
|
|
file_names = [path.name for path in paths]
|
|
doc_ids_to_delete = []
|
|
for ingested_document in self._ingest_service.list_ingested():
|
|
if (
|
|
ingested_document.doc_metadata
|
|
and ingested_document.doc_metadata["file_name"] in file_names
|
|
):
|
|
doc_ids_to_delete.append(ingested_document.doc_id)
|
|
if len(doc_ids_to_delete) > 0:
|
|
logger.info(
|
|
"Uploading file(s) which were already ingested: %s document(s) will be replaced.",
|
|
len(doc_ids_to_delete),
|
|
)
|
|
for doc_id in doc_ids_to_delete:
|
|
self._ingest_service.delete(doc_id)
|
|
|
|
self._ingest_service.bulk_ingest([(str(path.name), path) for path in paths])
|
|
|
|
def _delete_all_files(self) -> Any:
|
|
ingested_files = self._ingest_service.list_ingested()
|
|
logger.debug("Deleting count=%s files", len(ingested_files))
|
|
for ingested_document in ingested_files:
|
|
self._ingest_service.delete(ingested_document.doc_id)
|
|
return [
|
|
gr.List(self._list_ingested_files()),
|
|
gr.components.Button(interactive=False),
|
|
gr.components.Button(interactive=False),
|
|
gr.components.Textbox("All files"),
|
|
]
|
|
|
|
def _delete_selected_file(self) -> Any:
|
|
logger.debug("Deleting selected %s", self._selected_filename)
|
|
# Note: keep looping for pdf's (each page became a Document)
|
|
for ingested_document in self._ingest_service.list_ingested():
|
|
if (
|
|
ingested_document.doc_metadata
|
|
and ingested_document.doc_metadata["file_name"]
|
|
== self._selected_filename
|
|
):
|
|
self._ingest_service.delete(ingested_document.doc_id)
|
|
return [
|
|
gr.List(self._list_ingested_files()),
|
|
gr.components.Button(interactive=False),
|
|
gr.components.Button(interactive=False),
|
|
gr.components.Textbox("All files"),
|
|
]
|
|
|
|
def _deselect_selected_file(self) -> Any:
|
|
self._selected_filename = None
|
|
return [
|
|
gr.components.Button(interactive=False),
|
|
gr.components.Button(interactive=False),
|
|
gr.components.Textbox("All files"),
|
|
]
|
|
|
|
def _selected_a_file(self, select_data: gr.SelectData) -> Any:
|
|
self._selected_filename = select_data.value
|
|
return [
|
|
gr.components.Button(interactive=True),
|
|
gr.components.Button(interactive=True),
|
|
gr.components.Textbox(self._selected_filename),
|
|
]
|
|
|
|
def _build_ui_blocks(self) -> gr.Blocks:
|
|
logger.debug("Creating the UI blocks")
|
|
with gr.Blocks(
|
|
title=UI_TAB_TITLE,
|
|
theme=gr.themes.Soft(primary_hue=slate),
|
|
css=".logo { "
|
|
"display:flex;"
|
|
"background-color: #C7BAFF;"
|
|
"height: 80px;"
|
|
"border-radius: 8px;"
|
|
"align-content: center;"
|
|
"justify-content: center;"
|
|
"align-items: center;"
|
|
"}"
|
|
".logo img { height: 25% }"
|
|
".contain { display: flex !important; flex-direction: column !important; }"
|
|
"#component-0, #component-3, #component-10, #component-8 { height: 100% !important; }"
|
|
"#chatbot { flex-grow: 1 !important; overflow: auto !important;}"
|
|
"#col { height: calc(100vh - 112px - 16px) !important; }",
|
|
) as blocks:
|
|
with gr.Row():
|
|
gr.HTML(f"<div class='logo'/><img src={logo_svg} alt=PrivateGPT></div")
|
|
|
|
with gr.Row(equal_height=False):
|
|
with gr.Column(scale=3):
|
|
mode = gr.Radio(
|
|
MODES,
|
|
label="Mode",
|
|
value="Query Files",
|
|
)
|
|
upload_button = gr.components.UploadButton(
|
|
"Upload File(s)",
|
|
type="filepath",
|
|
file_count="multiple",
|
|
size="sm",
|
|
)
|
|
ingested_dataset = gr.List(
|
|
self._list_ingested_files,
|
|
headers=["File name"],
|
|
label="Ingested Files",
|
|
height=235,
|
|
interactive=False,
|
|
render=False, # Rendered under the button
|
|
)
|
|
upload_button.upload(
|
|
self._upload_file,
|
|
inputs=upload_button,
|
|
outputs=ingested_dataset,
|
|
)
|
|
ingested_dataset.change(
|
|
self._list_ingested_files,
|
|
outputs=ingested_dataset,
|
|
)
|
|
ingested_dataset.render()
|
|
deselect_file_button = gr.components.Button(
|
|
"De-select selected file", size="sm", interactive=False
|
|
)
|
|
selected_text = gr.components.Textbox(
|
|
"All files", label="Selected for Query or Deletion", max_lines=1
|
|
)
|
|
delete_file_button = gr.components.Button(
|
|
"🗑️ Delete selected file",
|
|
size="sm",
|
|
visible=settings().ui.delete_file_button_enabled,
|
|
interactive=False,
|
|
)
|
|
delete_files_button = gr.components.Button(
|
|
"⚠️ Delete ALL files",
|
|
size="sm",
|
|
visible=settings().ui.delete_all_files_button_enabled,
|
|
)
|
|
deselect_file_button.click(
|
|
self._deselect_selected_file,
|
|
outputs=[
|
|
delete_file_button,
|
|
deselect_file_button,
|
|
selected_text,
|
|
],
|
|
)
|
|
ingested_dataset.select(
|
|
fn=self._selected_a_file,
|
|
outputs=[
|
|
delete_file_button,
|
|
deselect_file_button,
|
|
selected_text,
|
|
],
|
|
)
|
|
delete_file_button.click(
|
|
self._delete_selected_file,
|
|
outputs=[
|
|
ingested_dataset,
|
|
delete_file_button,
|
|
deselect_file_button,
|
|
selected_text,
|
|
],
|
|
)
|
|
delete_files_button.click(
|
|
self._delete_all_files,
|
|
outputs=[
|
|
ingested_dataset,
|
|
delete_file_button,
|
|
deselect_file_button,
|
|
selected_text,
|
|
],
|
|
)
|
|
system_prompt_input = gr.Textbox(
|
|
placeholder=self._system_prompt,
|
|
label="System Prompt",
|
|
lines=2,
|
|
interactive=True,
|
|
render=False,
|
|
)
|
|
# When mode changes, set default system prompt
|
|
mode.change(
|
|
self._set_current_mode, inputs=mode, outputs=system_prompt_input
|
|
)
|
|
# On blur, set system prompt to use in queries
|
|
system_prompt_input.blur(
|
|
self._set_system_prompt,
|
|
inputs=system_prompt_input,
|
|
)
|
|
|
|
def get_model_label() -> str | None:
|
|
"""Get model label from llm mode setting YAML.
|
|
|
|
Raises:
|
|
ValueError: If an invalid 'llm_mode' is encountered.
|
|
|
|
Returns:
|
|
str: The corresponding model label.
|
|
"""
|
|
# Get model label from llm mode setting YAML
|
|
# Labels: local, openai, openailike, sagemaker, mock, ollama
|
|
config_settings = settings()
|
|
if config_settings is None:
|
|
raise ValueError("Settings are not configured.")
|
|
|
|
# Get llm_mode from settings
|
|
llm_mode = config_settings.llm.mode
|
|
|
|
# Mapping of 'llm_mode' to corresponding model labels
|
|
model_mapping = {
|
|
"llamacpp": config_settings.llamacpp.llm_hf_model_file,
|
|
"openai": config_settings.openai.model,
|
|
"openailike": config_settings.openai.model,
|
|
"sagemaker": config_settings.sagemaker.llm_endpoint_name,
|
|
"mock": llm_mode,
|
|
"ollama": config_settings.ollama.llm_model,
|
|
"gemini": config_settings.gemini.model,
|
|
}
|
|
|
|
if llm_mode not in model_mapping:
|
|
print(f"Invalid 'llm mode': {llm_mode}")
|
|
return None
|
|
|
|
return model_mapping[llm_mode]
|
|
|
|
with gr.Column(scale=7, elem_id="col"):
|
|
# Determine the model label based on the value of PGPT_PROFILES
|
|
model_label = get_model_label()
|
|
if model_label is not None:
|
|
label_text = (
|
|
f"LLM: {settings().llm.mode} | Model: {model_label}"
|
|
)
|
|
else:
|
|
label_text = f"LLM: {settings().llm.mode}"
|
|
|
|
_ = gr.ChatInterface(
|
|
self._chat,
|
|
chatbot=gr.Chatbot(
|
|
label=label_text,
|
|
show_copy_button=True,
|
|
elem_id="chatbot",
|
|
render=False,
|
|
avatar_images=(
|
|
None,
|
|
AVATAR_BOT,
|
|
),
|
|
),
|
|
additional_inputs=[mode, upload_button, system_prompt_input],
|
|
)
|
|
return blocks
|
|
|
|
def get_ui_blocks(self) -> gr.Blocks:
|
|
if self._ui_block is None:
|
|
self._ui_block = self._build_ui_blocks()
|
|
return self._ui_block
|
|
|
|
def mount_in_app(self, app: FastAPI, path: str) -> None:
|
|
blocks = self.get_ui_blocks()
|
|
blocks.queue()
|
|
logger.info("Mounting the gradio UI, at path=%s", path)
|
|
gr.mount_gradio_app(app, blocks, path=path)
|
|
|
|
|
|
if __name__ == "__main__":
|
|
ui = global_injector.get(PrivateGptUi)
|
|
_blocks = ui.get_ui_blocks()
|
|
_blocks.queue()
|
|
_blocks.launch(debug=False, show_api=False)
|