Vendor in c/image with sigstore support

Signed-off-by: Miloslav Trmač <mitr@redhat.com>
This commit is contained in:
Miloslav Trmač
2022-07-06 07:15:31 +02:00
parent b95e081162
commit 06be7a1559
424 changed files with 35364 additions and 4746 deletions

View File

@@ -0,0 +1,98 @@
package goodkey
import (
"crypto"
"crypto/sha256"
"encoding/base64"
"encoding/hex"
"errors"
"io/ioutil"
"github.com/letsencrypt/boulder/core"
yaml "gopkg.in/yaml.v2"
)
// blockedKeys is a type for maintaining a map of SHA256 hashes
// of SubjectPublicKeyInfo's that should be considered blocked.
// blockedKeys are created by using loadBlockedKeysList.
type blockedKeys map[core.Sha256Digest]bool
var ErrWrongDecodedSize = errors.New("not enough bytes decoded for sha256 hash")
// blocked checks if the given public key is considered administratively
// blocked based on a SHA256 hash of the SubjectPublicKeyInfo.
// Important: blocked should not be called except on a blockedKeys instance
// returned from loadBlockedKeysList.
// function should not be used until after `loadBlockedKeysList` has returned.
func (b blockedKeys) blocked(key crypto.PublicKey) (bool, error) {
hash, err := core.KeyDigest(key)
if err != nil {
// the bool result should be ignored when err is != nil but to be on the
// paranoid side return true anyway so that a key we can't compute the
// digest for will always be blocked even if a caller foolishly discards the
// err result.
return true, err
}
return b[hash], nil
}
// loadBlockedKeysList creates a blockedKeys object that can be used to check if
// a key is blocked. It creates a lookup map from a list of
// SHA256 hashes of SubjectPublicKeyInfo's in the input YAML file
// with the expected format:
//
// ```
// blocked:
// - cuwGhNNI6nfob5aqY90e7BleU6l7rfxku4X3UTJ3Z7M=
// <snipped>
// - Qebc1V3SkX3izkYRGNJilm9Bcuvf0oox4U2Rn+b4JOE=
// ```
//
// If no hashes are found in the input YAML an error is returned.
func loadBlockedKeysList(filename string) (*blockedKeys, error) {
yamlBytes, err := ioutil.ReadFile(filename)
if err != nil {
return nil, err
}
var list struct {
BlockedHashes []string `yaml:"blocked"`
BlockedHashesHex []string `yaml:"blockedHashesHex"`
}
err = yaml.Unmarshal(yamlBytes, &list)
if err != nil {
return nil, err
}
if len(list.BlockedHashes) == 0 && len(list.BlockedHashesHex) == 0 {
return nil, errors.New("no blocked hashes in YAML")
}
blockedKeys := make(blockedKeys, len(list.BlockedHashes)+len(list.BlockedHashesHex))
for _, b64Hash := range list.BlockedHashes {
decoded, err := base64.StdEncoding.DecodeString(b64Hash)
if err != nil {
return nil, err
}
if len(decoded) != sha256.Size {
return nil, ErrWrongDecodedSize
}
var sha256Digest core.Sha256Digest
copy(sha256Digest[:], decoded[0:sha256.Size])
blockedKeys[sha256Digest] = true
}
for _, hexHash := range list.BlockedHashesHex {
decoded, err := hex.DecodeString(hexHash)
if err != nil {
return nil, err
}
if len(decoded) != sha256.Size {
return nil, ErrWrongDecodedSize
}
var sha256Digest core.Sha256Digest
copy(sha256Digest[:], decoded[0:sha256.Size])
blockedKeys[sha256Digest] = true
}
return &blockedKeys, nil
}

View File

@@ -0,0 +1,432 @@
package goodkey
import (
"context"
"crypto"
"crypto/ecdsa"
"crypto/elliptic"
"crypto/rsa"
"errors"
"fmt"
"math/big"
"sync"
"github.com/letsencrypt/boulder/core"
berrors "github.com/letsencrypt/boulder/errors"
"github.com/letsencrypt/boulder/features"
sapb "github.com/letsencrypt/boulder/sa/proto"
"google.golang.org/grpc"
"github.com/titanous/rocacheck"
)
// To generate, run: primes 2 752 | tr '\n' ,
var smallPrimeInts = []int64{
2, 3, 5, 7, 11, 13, 17, 19, 23, 29, 31, 37, 41, 43, 47,
53, 59, 61, 67, 71, 73, 79, 83, 89, 97, 101, 103, 107,
109, 113, 127, 131, 137, 139, 149, 151, 157, 163, 167,
173, 179, 181, 191, 193, 197, 199, 211, 223, 227, 229,
233, 239, 241, 251, 257, 263, 269, 271, 277, 281, 283,
293, 307, 311, 313, 317, 331, 337, 347, 349, 353, 359,
367, 373, 379, 383, 389, 397, 401, 409, 419, 421, 431,
433, 439, 443, 449, 457, 461, 463, 467, 479, 487, 491,
499, 503, 509, 521, 523, 541, 547, 557, 563, 569, 571,
577, 587, 593, 599, 601, 607, 613, 617, 619, 631, 641,
643, 647, 653, 659, 661, 673, 677, 683, 691, 701, 709,
719, 727, 733, 739, 743, 751,
}
// singleton defines the object of a Singleton pattern
var (
smallPrimesSingleton sync.Once
smallPrimesProduct *big.Int
)
type Config struct {
// WeakKeyFile is the path to a JSON file containing truncated modulus hashes
// of known weak RSA keys. If this config value is empty, then RSA modulus
// hash checking will be disabled.
WeakKeyFile string
// BlockedKeyFile is the path to a YAML file containing base64-encoded SHA256
// hashes of PKIX Subject Public Keys that should be blocked. If this config
// value is empty, then blocked key checking will be disabled.
BlockedKeyFile string
// FermatRounds is an integer number of rounds of Fermat's factorization
// method that should be performed to attempt to detect keys whose modulus can
// be trivially factored because the two factors are very close to each other.
// If this config value is empty (0), no factorization will be attempted.
FermatRounds int
}
// ErrBadKey represents an error with a key. It is distinct from the various
// ways in which an ACME request can have an erroneous key (BadPublicKeyError,
// BadCSRError) because this library is used to check both JWS signing keys and
// keys in CSRs.
var ErrBadKey = errors.New("")
func badKey(msg string, args ...interface{}) error {
return fmt.Errorf("%w%s", ErrBadKey, fmt.Errorf(msg, args...))
}
// BlockedKeyCheckFunc is used to pass in the sa.BlockedKey method to KeyPolicy,
// rather than storing a full sa.SQLStorageAuthority. This makes testing
// significantly simpler.
type BlockedKeyCheckFunc func(context.Context, *sapb.KeyBlockedRequest, ...grpc.CallOption) (*sapb.Exists, error)
// KeyPolicy determines which types of key may be used with various boulder
// operations.
type KeyPolicy struct {
AllowRSA bool // Whether RSA keys should be allowed.
AllowECDSANISTP256 bool // Whether ECDSA NISTP256 keys should be allowed.
AllowECDSANISTP384 bool // Whether ECDSA NISTP384 keys should be allowed.
weakRSAList *WeakRSAKeys
blockedList *blockedKeys
fermatRounds int
dbCheck BlockedKeyCheckFunc
}
// NewKeyPolicy returns a KeyPolicy that allows RSA, ECDSA256 and ECDSA384.
// weakKeyFile contains the path to a JSON file containing truncated modulus
// hashes of known weak RSA keys. If this argument is empty RSA modulus hash
// checking will be disabled. blockedKeyFile contains the path to a YAML file
// containing Base64 encoded SHA256 hashes of pkix subject public keys that
// should be blocked. If this argument is empty then no blocked key checking is
// performed.
func NewKeyPolicy(config *Config, bkc BlockedKeyCheckFunc) (KeyPolicy, error) {
kp := KeyPolicy{
AllowRSA: true,
AllowECDSANISTP256: true,
AllowECDSANISTP384: true,
dbCheck: bkc,
}
if config.WeakKeyFile != "" {
keyList, err := LoadWeakRSASuffixes(config.WeakKeyFile)
if err != nil {
return KeyPolicy{}, err
}
kp.weakRSAList = keyList
}
if config.BlockedKeyFile != "" {
blocked, err := loadBlockedKeysList(config.BlockedKeyFile)
if err != nil {
return KeyPolicy{}, err
}
kp.blockedList = blocked
}
if config.FermatRounds < 0 {
return KeyPolicy{}, fmt.Errorf("Fermat factorization rounds cannot be negative: %d", config.FermatRounds)
}
kp.fermatRounds = config.FermatRounds
return kp, nil
}
// GoodKey returns true if the key is acceptable for both TLS use and account
// key use (our requirements are the same for either one), according to basic
// strength and algorithm checking. GoodKey only supports pointers: *rsa.PublicKey
// and *ecdsa.PublicKey. It will reject non-pointer types.
// TODO: Support JSONWebKeys once go-jose migration is done.
func (policy *KeyPolicy) GoodKey(ctx context.Context, key crypto.PublicKey) error {
// Early rejection of unacceptable key types to guard subsequent checks.
switch t := key.(type) {
case *rsa.PublicKey, *ecdsa.PublicKey:
break
default:
return badKey("unsupported key type %T", t)
}
// If there is a blocked list configured then check if the public key is one
// that has been administratively blocked.
if policy.blockedList != nil {
if blocked, err := policy.blockedList.blocked(key); err != nil {
return berrors.InternalServerError("error checking blocklist for key: %v", key)
} else if blocked {
return badKey("public key is forbidden")
}
}
if policy.dbCheck != nil {
digest, err := core.KeyDigest(key)
if err != nil {
return badKey("%w", err)
}
exists, err := policy.dbCheck(ctx, &sapb.KeyBlockedRequest{KeyHash: digest[:]})
if err != nil {
return err
} else if exists.Exists {
return badKey("public key is forbidden")
}
}
switch t := key.(type) {
case *rsa.PublicKey:
return policy.goodKeyRSA(t)
case *ecdsa.PublicKey:
return policy.goodKeyECDSA(t)
default:
return badKey("unsupported key type %T", key)
}
}
// GoodKeyECDSA determines if an ECDSA pubkey meets our requirements
func (policy *KeyPolicy) goodKeyECDSA(key *ecdsa.PublicKey) (err error) {
// Check the curve.
//
// The validity of the curve is an assumption for all following tests.
err = policy.goodCurve(key.Curve)
if err != nil {
return err
}
// Key validation routine adapted from NIST SP800-56A § 5.6.2.3.2.
// <http://nvlpubs.nist.gov/nistpubs/SpecialPublications/NIST.SP.800-56Ar2.pdf>
//
// Assuming a prime field since a) we are only allowing such curves and b)
// crypto/elliptic only supports prime curves. Where this assumption
// simplifies the code below, it is explicitly stated and explained. If ever
// adapting this code to support non-prime curves, refer to NIST SP800-56A §
// 5.6.2.3.2 and adapt this code appropriately.
params := key.Params()
// SP800-56A § 5.6.2.3.2 Step 1.
// Partial check of the public key for an invalid range in the EC group:
// Verify that key is not the point at infinity O.
// This code assumes that the point at infinity is (0,0), which is the
// case for all supported curves.
if isPointAtInfinityNISTP(key.X, key.Y) {
return badKey("key x, y must not be the point at infinity")
}
// SP800-56A § 5.6.2.3.2 Step 2.
// "Verify that x_Q and y_Q are integers in the interval [0,p-1] in the
// case that q is an odd prime p, or that x_Q and y_Q are bit strings
// of length m bits in the case that q = 2**m."
//
// Prove prime field: ASSUMED.
// Prove q != 2: ASSUMED. (Curve parameter. No supported curve has q == 2.)
// Prime field && q != 2 => q is an odd prime p
// Therefore "verify that x, y are in [0, p-1]" satisfies step 2.
//
// Therefore verify that both x and y of the public key point have the unique
// correct representation of an element in the underlying field by verifying
// that x and y are integers in [0, p-1].
if key.X.Sign() < 0 || key.Y.Sign() < 0 {
return badKey("key x, y must not be negative")
}
if key.X.Cmp(params.P) >= 0 || key.Y.Cmp(params.P) >= 0 {
return badKey("key x, y must not exceed P-1")
}
// SP800-56A § 5.6.2.3.2 Step 3.
// "If q is an odd prime p, verify that (y_Q)**2 === (x_Q)***3 + a*x_Q + b (mod p).
// If q = 2**m, verify that (y_Q)**2 + (x_Q)*(y_Q) == (x_Q)**3 + a*(x_Q)*2 + b in
// the finite field of size 2**m.
// (Ensures that the public key is on the correct elliptic curve.)"
//
// q is an odd prime p: proven/assumed above.
// a = -3 for all supported curves.
//
// Therefore step 3 is satisfied simply by showing that
// y**2 === x**3 - 3*x + B (mod P).
//
// This proves that the public key is on the correct elliptic curve.
// But in practice, this test is provided by crypto/elliptic, so use that.
if !key.Curve.IsOnCurve(key.X, key.Y) {
return badKey("key point is not on the curve")
}
// SP800-56A § 5.6.2.3.2 Step 4.
// "Verify that n*Q == Ø.
// (Ensures that the public key has the correct order. Along with check 1,
// ensures that the public key is in the correct range in the correct EC
// subgroup, that is, it is in the correct EC subgroup and is not the
// identity element.)"
//
// Ensure that public key has the correct order:
// verify that n*Q = Ø.
//
// n*Q = Ø iff n*Q is the point at infinity (see step 1).
ox, oy := key.Curve.ScalarMult(key.X, key.Y, params.N.Bytes())
if !isPointAtInfinityNISTP(ox, oy) {
return badKey("public key does not have correct order")
}
// End of SP800-56A § 5.6.2.3.2 Public Key Validation Routine.
// Key is valid.
return nil
}
// Returns true iff the point (x,y) on NIST P-256, NIST P-384 or NIST P-521 is
// the point at infinity. These curves all have the same point at infinity
// (0,0). This function must ONLY be used on points on curves verified to have
// (0,0) as their point at infinity.
func isPointAtInfinityNISTP(x, y *big.Int) bool {
return x.Sign() == 0 && y.Sign() == 0
}
// GoodCurve determines if an elliptic curve meets our requirements.
func (policy *KeyPolicy) goodCurve(c elliptic.Curve) (err error) {
// Simply use a whitelist for now.
params := c.Params()
switch {
case policy.AllowECDSANISTP256 && params == elliptic.P256().Params():
return nil
case policy.AllowECDSANISTP384 && params == elliptic.P384().Params():
return nil
default:
return badKey("ECDSA curve %v not allowed", params.Name)
}
}
var acceptableRSAKeySizes = map[int]bool{
2048: true,
3072: true,
4096: true,
}
// GoodKeyRSA determines if a RSA pubkey meets our requirements
func (policy *KeyPolicy) goodKeyRSA(key *rsa.PublicKey) (err error) {
if !policy.AllowRSA {
return badKey("RSA keys are not allowed")
}
if policy.weakRSAList != nil && policy.weakRSAList.Known(key) {
return badKey("key is on a known weak RSA key list")
}
// Baseline Requirements Appendix A
// Modulus must be >= 2048 bits and <= 4096 bits
modulus := key.N
modulusBitLen := modulus.BitLen()
if features.Enabled(features.RestrictRSAKeySizes) {
if !acceptableRSAKeySizes[modulusBitLen] {
return badKey("key size not supported: %d", modulusBitLen)
}
} else {
const maxKeySize = 4096
if modulusBitLen < 2048 {
return badKey("key too small: %d", modulusBitLen)
}
if modulusBitLen > maxKeySize {
return badKey("key too large: %d > %d", modulusBitLen, maxKeySize)
}
// Bit lengths that are not a multiple of 8 may cause problems on some
// client implementations.
if modulusBitLen%8 != 0 {
return badKey("key length wasn't a multiple of 8: %d", modulusBitLen)
}
}
// Rather than support arbitrary exponents, which significantly increases
// the size of the key space we allow, we restrict E to the defacto standard
// RSA exponent 65537. There is no specific standards document that specifies
// 65537 as the 'best' exponent, but ITU X.509 Annex C suggests there are
// notable merits for using it if using a fixed exponent.
//
// The CABF Baseline Requirements state:
// The CA SHALL confirm that the value of the public exponent is an
// odd number equal to 3 or more. Additionally, the public exponent
// SHOULD be in the range between 2^16 + 1 and 2^256-1.
//
// By only allowing one exponent, which fits these constraints, we satisfy
// these requirements.
if key.E != 65537 {
return badKey("key exponent must be 65537")
}
// The modulus SHOULD also have the following characteristics: an odd
// number, not the power of a prime, and have no factors smaller than 752.
// TODO: We don't yet check for "power of a prime."
if checkSmallPrimes(modulus) {
return badKey("key divisible by small prime")
}
// Check for weak keys generated by Infineon hardware
// (see https://crocs.fi.muni.cz/public/papers/rsa_ccs17)
if rocacheck.IsWeak(key) {
return badKey("key generated by vulnerable Infineon-based hardware")
}
// Check if the key can be easily factored via Fermat's factorization method.
if policy.fermatRounds > 0 {
err := checkPrimeFactorsTooClose(modulus, policy.fermatRounds)
if err != nil {
return badKey("key generated with factors too close together: %w", err)
}
}
return nil
}
// Returns true iff integer i is divisible by any of the primes in smallPrimes.
//
// Short circuits; execution time is dependent on i. Do not use this on secret
// values.
//
// Rather than checking each prime individually (invoking Mod on each),
// multiply the primes together and let GCD do our work for us: if the
// GCD between <key> and <product of primes> is not one, we know we have
// a bad key. This is substantially faster than checking each prime
// individually.
func checkSmallPrimes(i *big.Int) bool {
smallPrimesSingleton.Do(func() {
smallPrimesProduct = big.NewInt(1)
for _, prime := range smallPrimeInts {
smallPrimesProduct.Mul(smallPrimesProduct, big.NewInt(prime))
}
})
// When the GCD is 1, i and smallPrimesProduct are coprime, meaning they
// share no common factors. When the GCD is not one, it is the product of
// all common factors, meaning we've identified at least one small prime
// which invalidates i as a valid key.
var result big.Int
result.GCD(nil, nil, i, smallPrimesProduct)
return result.Cmp(big.NewInt(1)) != 0
}
// Returns an error if the modulus n is able to be factored into primes p and q
// via Fermat's factorization method. This method relies on the two primes being
// very close together, which means that they were almost certainly not picked
// independently from a uniform random distribution. Basically, if we can factor
// the key this easily, so can anyone else.
func checkPrimeFactorsTooClose(n *big.Int, rounds int) error {
// Pre-allocate some big numbers that we'll use a lot down below.
one := big.NewInt(1)
bb := new(big.Int)
// Any odd integer is equal to a difference of squares of integers:
// n = a^2 - b^2 = (a + b)(a - b)
// Any RSA public key modulus is equal to a product of two primes:
// n = pq
// Here we try to find values for a and b, since doing so also gives us the
// prime factors p = (a + b) and q = (a - b).
// We start with a close to the square root of the modulus n, to start with
// two candidate prime factors that are as close together as possible and
// work our way out from there. Specifically, we set a = ceil(sqrt(n)), the
// first integer greater than the square root of n. Unfortunately, big.Int's
// built-in square root function takes the floor, so we have to add one to get
// the ceil.
a := new(big.Int)
a.Sqrt(n).Add(a, one)
// We calculate b2 to see if it is a perfect square (i.e. b^2), and therefore
// b is an integer. Specifically, b2 = a^2 - n.
b2 := new(big.Int)
b2.Mul(a, a).Sub(b2, n)
for i := 0; i < rounds; i++ {
// To see if b2 is a perfect square, we take its square root, square that,
// and check to see if we got the same result back.
bb.Sqrt(b2).Mul(bb, bb)
if b2.Cmp(bb) == 0 {
// b2 is a perfect square, so we've found integer values of a and b,
// and can easily compute p and q as their sum and difference.
bb.Sqrt(bb)
p := new(big.Int).Add(a, bb)
q := new(big.Int).Sub(a, bb)
return fmt.Errorf("public modulus n = pq factored into p: %s; q: %s", p, q)
}
// Set up the next iteration by incrementing a by one and recalculating b2.
a.Add(a, one)
b2.Mul(a, a).Sub(b2, n)
}
return nil
}

66
vendor/github.com/letsencrypt/boulder/goodkey/weak.go generated vendored Normal file
View File

@@ -0,0 +1,66 @@
package goodkey
// This file defines a basic method for testing if a given RSA public key is on one of
// the Debian weak key lists and is therefore considered compromised. Instead of
// directly loading the hash suffixes from the individual lists we flatten them all
// into a single JSON list using cmd/weak-key-flatten for ease of use.
import (
"crypto/rsa"
"crypto/sha1"
"encoding/hex"
"encoding/json"
"fmt"
"io/ioutil"
)
type truncatedHash [10]byte
type WeakRSAKeys struct {
suffixes map[truncatedHash]struct{}
}
func LoadWeakRSASuffixes(path string) (*WeakRSAKeys, error) {
f, err := ioutil.ReadFile(path)
if err != nil {
return nil, err
}
var suffixList []string
err = json.Unmarshal(f, &suffixList)
if err != nil {
return nil, err
}
wk := &WeakRSAKeys{suffixes: make(map[truncatedHash]struct{})}
for _, suffix := range suffixList {
err := wk.addSuffix(suffix)
if err != nil {
return nil, err
}
}
return wk, nil
}
func (wk *WeakRSAKeys) addSuffix(str string) error {
var suffix truncatedHash
decoded, err := hex.DecodeString(str)
if err != nil {
return err
}
if len(decoded) != 10 {
return fmt.Errorf("unexpected suffix length of %d", len(decoded))
}
copy(suffix[:], decoded)
wk.suffixes[suffix] = struct{}{}
return nil
}
func (wk *WeakRSAKeys) Known(key *rsa.PublicKey) bool {
// Hash input is in the format "Modulus={upper-case hex of modulus}\n"
hash := sha1.Sum([]byte(fmt.Sprintf("Modulus=%X\n", key.N.Bytes())))
var suffix truncatedHash
copy(suffix[:], hash[10:])
_, present := wk.suffixes[suffix]
return present
}