skopeo/vendor/github.com/containers/storage/images.go
renovate[bot] ed34be71c6
fix(deps): update module github.com/containers/storage to v1.58.0
Signed-off-by: renovate[bot] <29139614+renovate[bot]@users.noreply.github.com>
2025-04-16 15:55:29 +00:00

1072 lines
34 KiB
Go
Raw Blame History

This file contains ambiguous Unicode characters

This file contains Unicode characters that might be confused with other characters. If you think that this is intentional, you can safely ignore this warning. Use the Escape button to reveal them.

package storage
import (
"fmt"
"os"
"path/filepath"
"slices"
"strings"
"sync"
"time"
"github.com/containers/storage/pkg/ioutils"
"github.com/containers/storage/pkg/lockfile"
"github.com/containers/storage/pkg/stringid"
"github.com/containers/storage/pkg/stringutils"
"github.com/containers/storage/pkg/truncindex"
digest "github.com/opencontainers/go-digest"
"github.com/sirupsen/logrus"
)
const (
// ImageDigestManifestBigDataNamePrefix is a prefix of big data item
// names which we consider to be manifests, used for computing a
// "digest" value for the image as a whole, by which we can locate the
// image later.
ImageDigestManifestBigDataNamePrefix = "manifest"
// ImageDigestBigDataKey is provided for compatibility with older
// versions of the image library. It will be removed in the future.
ImageDigestBigDataKey = "manifest"
)
// An Image is a reference to a layer and an associated metadata string.
type Image struct {
// ID is either one which was specified at create-time, or a random
// value which was generated by the library.
ID string `json:"id"`
// Digest is a digest value that we can use to locate the image, if one
// was specified at creation-time.
Digest digest.Digest `json:"digest,omitempty"`
// Digests is a list of digest values of the image's manifests, and
// possibly a manually-specified value, that we can use to locate the
// image. If Digest is set, its value is also in this list.
Digests []digest.Digest `json:"-"`
// Names is an optional set of user-defined convenience values. The
// image can be referred to by its ID or any of its names. Names are
// unique among images, and are often the text representation of tagged
// or canonical references.
Names []string `json:"names,omitempty"`
// NamesHistory is an optional set of Names the image had in the past. The
// contained names are free from any duplicates, whereas the newest entry
// is the first one.
NamesHistory []string `json:"names-history,omitempty"`
// TopLayer is the ID of the topmost layer of the image itself, if the
// image contains one or more layers. Multiple images can refer to the
// same top layer.
TopLayer string `json:"layer,omitempty"`
// MappedTopLayers are the IDs of alternate versions of the top layer
// which have the same contents and parent, and which differ from
// TopLayer only in which ID mappings they use. When the image is
// to be removed, they should be removed before the TopLayer, as the
// graph driver may depend on that.
MappedTopLayers []string `json:"mapped-layers,omitempty"`
// Metadata is data we keep for the convenience of the caller. It is not
// expected to be large, since it is kept in memory.
Metadata string `json:"metadata,omitempty"`
// BigDataNames is a list of names of data items that we keep for the
// convenience of the caller. They can be large, and are only in
// memory when being read from or written to disk.
BigDataNames []string `json:"big-data-names,omitempty"`
// BigDataSizes maps the names in BigDataNames to the sizes of the data
// that has been stored, if they're known.
BigDataSizes map[string]int64 `json:"big-data-sizes,omitempty"`
// BigDataDigests maps the names in BigDataNames to the digests of the
// data that has been stored, if they're known.
BigDataDigests map[string]digest.Digest `json:"big-data-digests,omitempty"`
// Created is the datestamp for when this image was created. Older
// versions of the library did not track this information, so callers
// will likely want to use the IsZero() method to verify that a value
// is set before using it.
Created time.Time `json:"created,omitempty"`
// ReadOnly is true if this image resides in a read-only layer store.
ReadOnly bool `json:"-"`
Flags map[string]any `json:"flags,omitempty"`
}
// roImageStore provides bookkeeping for information about Images.
type roImageStore interface {
roMetadataStore
roBigDataStore
// startReading makes sure the store is fresh, and locks it for reading.
// If this succeeds, the caller MUST call stopReading().
startReading() error
// stopReading releases locks obtained by startReading.
stopReading()
// Exists checks if there is an image with the given ID or name.
Exists(id string) bool
// Get retrieves information about an image given an ID or name.
Get(id string) (*Image, error)
// Images returns a slice enumerating the known images.
Images() ([]Image, error)
// ByDigest returns a slice enumerating the images which have either an
// explicitly-set digest, or a big data item with a name that starts
// with ImageDigestManifestBigDataNamePrefix, which matches the
// specified digest.
ByDigest(d digest.Digest) ([]*Image, error)
}
// rwImageStore provides bookkeeping for information about Images.
type rwImageStore interface {
roImageStore
rwMetadataStore
rwImageBigDataStore
flaggableStore
// startWriting makes sure the store is fresh, and locks it for writing.
// If this succeeds, the caller MUST call stopWriting().
startWriting() error
// stopWriting releases locks obtained by startWriting.
stopWriting()
// create creates an image that has a specified ID (or a random one) and
// optional names, using the specified layer as its topmost (hopefully
// read-only) layer. That layer can be referenced by multiple images.
create(id string, names []string, layer string, options ImageOptions) (*Image, error)
// updateNames modifies names associated with an image based on (op, names).
// The values are expected to be valid normalized
// named image references.
updateNames(id string, names []string, op updateNameOperation) error
// Delete removes the record of the image.
Delete(id string) error
addMappedTopLayer(id, layer string) error
removeMappedTopLayer(id, layer string) error
// Clean up unreferenced per-image data.
GarbageCollect() error
// Wipe removes records of all images.
Wipe() error
}
type imageStore struct {
// The following fields are only set when constructing imageStore, and must never be modified afterwards.
// They are safe to access without any other locking.
lockfile *lockfile.LockFile // lockfile.IsReadWrite can be used to distinguish between read-write and read-only image stores.
dir string
inProcessLock sync.RWMutex // Can _only_ be obtained with lockfile held.
// The following fields can only be read/written with read/write ownership of inProcessLock, respectively.
// Almost all users should use startReading() or startWriting().
lastWrite lockfile.LastWrite
images []*Image
idindex *truncindex.TruncIndex
byid map[string]*Image
byname map[string]*Image
bydigest map[digest.Digest][]*Image
}
func copyImage(i *Image) *Image {
return &Image{
ID: i.ID,
Digest: i.Digest,
Digests: copySlicePreferringNil(i.Digests),
Names: copySlicePreferringNil(i.Names),
NamesHistory: copySlicePreferringNil(i.NamesHistory),
TopLayer: i.TopLayer,
MappedTopLayers: copySlicePreferringNil(i.MappedTopLayers),
Metadata: i.Metadata,
BigDataNames: copySlicePreferringNil(i.BigDataNames),
BigDataSizes: copyMapPreferringNil(i.BigDataSizes),
BigDataDigests: copyMapPreferringNil(i.BigDataDigests),
Created: i.Created,
ReadOnly: i.ReadOnly,
Flags: copyMapPreferringNil(i.Flags),
}
}
func copyImageSlice(slice []*Image) []*Image {
if len(slice) > 0 {
cp := make([]*Image, len(slice))
for i := range slice {
cp[i] = copyImage(slice[i])
}
return cp
}
return nil
}
// startWritingWithReload makes sure the store is fresh if canReload, and locks it for writing.
// If this succeeds, the caller MUST call stopWriting().
//
// This is an internal implementation detail of imageStore construction, every other caller
// should use startReading() instead.
func (r *imageStore) startWritingWithReload(canReload bool) error {
r.lockfile.Lock()
r.inProcessLock.Lock()
succeeded := false
defer func() {
if !succeeded {
r.inProcessLock.Unlock()
r.lockfile.Unlock()
}
}()
if canReload {
if _, err := r.reloadIfChanged(true); err != nil {
return err
}
}
succeeded = true
return nil
}
// startWriting makes sure the store is fresh, and locks it for writing.
// If this succeeds, the caller MUST call stopWriting().
func (r *imageStore) startWriting() error {
return r.startWritingWithReload(true)
}
// stopWriting releases locks obtained by startWriting.
func (r *imageStore) stopWriting() {
r.inProcessLock.Unlock()
r.lockfile.Unlock()
}
// startReadingWithReload makes sure the store is fresh if canReload, and locks it for reading.
// If this succeeds, the caller MUST call stopReading().
//
// This is an internal implementation detail of imageStore construction, every other caller
// should use startReading() instead.
func (r *imageStore) startReadingWithReload(canReload bool) error {
// inProcessLocked calls the nested function with r.inProcessLock held for writing.
inProcessLocked := func(fn func() error) error {
r.inProcessLock.Lock()
defer r.inProcessLock.Unlock()
return fn()
}
r.lockfile.RLock()
unlockFn := r.lockfile.Unlock // A function to call to clean up, or nil
defer func() {
if unlockFn != nil {
unlockFn()
}
}()
r.inProcessLock.RLock()
unlockFn = r.stopReading
if canReload {
// If we are lucky, we can just hold the read locks, check that we are fresh, and continue.
_, modified, err := r.modified()
if err != nil {
return err
}
if modified {
// We are unlucky, and need to reload.
// NOTE: Multiple goroutines can get to this place approximately simultaneously.
r.inProcessLock.RUnlock()
unlockFn = r.lockfile.Unlock
// r.lastWrite can change at this point if another goroutine reloads the store before us. Thats why we dont unconditionally
// trigger a load below; we (lock and) reloadIfChanged() again.
// First try reloading with r.lockfile held for reading.
// r.inProcessLock will serialize all goroutines that got here;
// each will re-check on-disk state vs. r.lastWrite, and the first one will actually reload the data.
var tryLockedForWriting bool
if err := inProcessLocked(func() error {
// We could optimize this further: The r.lockfile.GetLastWrite() value shouldnt change as long as we hold r.lockfile,
// so if r.lastWrite was already updated, we dont need to actually read the on-filesystem lock.
var err error
tryLockedForWriting, err = r.reloadIfChanged(false)
return err
}); err != nil {
if !tryLockedForWriting {
return err
}
// Not good enough, we need r.lockfile held for writing. So, lets do that.
unlockFn()
unlockFn = nil
r.lockfile.Lock()
unlockFn = r.lockfile.Unlock
if err := inProcessLocked(func() error {
_, err := r.reloadIfChanged(true)
return err
}); err != nil {
return err
}
unlockFn()
unlockFn = nil
r.lockfile.RLock()
unlockFn = r.lockfile.Unlock
// We need to check for a reload once more because the on-disk state could have been modified
// after we released the lock.
// If that, _again_, finds inconsistent state, just give up.
// We could, plausibly, retry a few times, but that inconsistent state (duplicate image names)
// shouldnt be saved (by correct implementations) in the first place.
if err := inProcessLocked(func() error {
_, err := r.reloadIfChanged(false)
return err
}); err != nil {
return fmt.Errorf("(even after successfully cleaning up once:) %w", err)
}
}
// NOTE that we hold neither a read nor write inProcessLock at this point. Thats fine in ordinary operation, because
// the on-filesystem r.lockfile should protect us against (cooperating) writers, and any use of r.inProcessLock
// protects us against in-process writers modifying data.
// In presence of non-cooperating writers, we just ensure that 1) the in-memory data is not clearly out-of-date
// and 2) access to the in-memory data is not racy;
// but we cant protect against those out-of-process writers modifying _files_ while we are assuming they are in a consistent state.
r.inProcessLock.RLock()
}
}
unlockFn = nil
return nil
}
// startReading makes sure the store is fresh, and locks it for reading.
// If this succeeds, the caller MUST call stopReading().
func (r *imageStore) startReading() error {
return r.startReadingWithReload(true)
}
// stopReading releases locks obtained by startReading.
func (r *imageStore) stopReading() {
r.inProcessLock.RUnlock()
r.lockfile.Unlock()
}
// modified returns true if the on-disk state has changed (i.e. if reloadIfChanged may need to modify the store),
// and a lockfile.LastWrite value for that update.
//
// The caller must hold r.lockfile for reading _or_ writing.
// The caller must hold r.inProcessLock for reading or writing.
func (r *imageStore) modified() (lockfile.LastWrite, bool, error) {
return r.lockfile.ModifiedSince(r.lastWrite)
}
// reloadIfChanged reloads the contents of the store from disk if it is changed.
//
// The caller must hold r.lockfile for reading _or_ writing; lockedForWriting is true
// if it is held for writing.
//
// The caller must hold r.inProcessLock for WRITING.
//
// If !lockedForWriting and this function fails, the return value indicates whether
// reloadIfChanged() with lockedForWriting could succeed.
func (r *imageStore) reloadIfChanged(lockedForWriting bool) (bool, error) {
lastWrite, modified, err := r.modified()
if err != nil {
return false, err
}
// We require callers to always hold r.inProcessLock for WRITING, even if they might not end up calling r.load()
// and modify no fields, to ensure they see fresh data:
// r.lockfile.Modified() only returns true once per change. Without an exclusive lock,
// one goroutine might see r.lockfile.Modified() == true and decide to load, and in the meanwhile another one could
// see r.lockfile.Modified() == false and proceed to use in-memory data without noticing it is stale.
if modified {
if tryLockedForWriting, err := r.load(lockedForWriting); err != nil {
return tryLockedForWriting, err // r.lastWrite is unchanged, so we will load the next time again.
}
r.lastWrite = lastWrite
}
return false, nil
}
// Requires startReading or startWriting.
func (r *imageStore) Images() ([]Image, error) {
images := make([]Image, len(r.images))
for i := range r.images {
images[i] = *copyImage(r.images[i])
}
return images, nil
}
// This looks for datadirs in the store directory that are not referenced
// by the json file and removes it. These can happen in the case of unclean
// shutdowns.
// Requires startReading or startWriting.
func (r *imageStore) GarbageCollect() error {
entries, err := os.ReadDir(r.dir)
if err != nil {
// Unexpected, don't try any GC
return err
}
for _, entry := range entries {
id := entry.Name()
// Does it look like a datadir directory?
if !entry.IsDir() || stringid.ValidateID(id) != nil {
continue
}
// Should the id be there?
if r.byid[id] != nil {
continue
}
// Otherwise remove datadir
logrus.Debugf("removing %q", filepath.Join(r.dir, id))
moreErr := os.RemoveAll(filepath.Join(r.dir, id))
// Propagate first error
if moreErr != nil && err == nil {
err = moreErr
}
}
return err
}
func (r *imageStore) imagespath() string {
return filepath.Join(r.dir, "images.json")
}
func (r *imageStore) datadir(id string) string {
return filepath.Join(r.dir, id)
}
func (r *imageStore) datapath(id, key string) string {
return filepath.Join(r.datadir(id), makeBigDataBaseName(key))
}
// bigDataNameIsManifest determines if a big data item with the specified name
// is considered to be representative of the image, in that its digest can be
// said to also be the image's digest. Currently, if its name is, or begins
// with, "manifest", we say that it is.
func bigDataNameIsManifest(name string) bool {
return strings.HasPrefix(name, ImageDigestManifestBigDataNamePrefix)
}
// recomputeDigests takes a fixed digest and a name-to-digest map and builds a
// list of the unique values that would identify the image.
// The caller must hold r.inProcessLock for writing.
func (i *Image) recomputeDigests() error {
validDigests := make([]digest.Digest, 0, len(i.BigDataDigests)+1)
digests := make(map[digest.Digest]struct{})
if i.Digest != "" {
if err := i.Digest.Validate(); err != nil {
return fmt.Errorf("validating image digest %q: %w", string(i.Digest), err)
}
digests[i.Digest] = struct{}{}
validDigests = append(validDigests, i.Digest)
}
for name, digest := range i.BigDataDigests {
if !bigDataNameIsManifest(name) {
continue
}
if err := digest.Validate(); err != nil {
return fmt.Errorf("validating digest %q for big data item %q: %w", string(digest), name, err)
}
// Deduplicate the digest values.
if _, known := digests[digest]; !known {
digests[digest] = struct{}{}
validDigests = append(validDigests, digest)
}
}
if i.Digest == "" && len(validDigests) > 0 {
i.Digest = validDigests[0]
}
i.Digests = validDigests
return nil
}
// load reloads the contents of the store from disk.
//
// Most callers should call reloadIfChanged() instead, to avoid overhead and to correctly
// manage r.lastWrite.
//
// The caller must hold r.lockfile for reading _or_ writing; lockedForWriting is true
// if it is held for writing.
// The caller must hold r.inProcessLock for WRITING.
//
// If !lockedForWriting and this function fails, the return value indicates whether
// retrying with lockedForWriting could succeed.
func (r *imageStore) load(lockedForWriting bool) (bool, error) {
rpath := r.imagespath()
data, err := os.ReadFile(rpath)
if err != nil && !os.IsNotExist(err) {
return false, err
}
images := []*Image{}
if len(data) != 0 {
if err := json.Unmarshal(data, &images); err != nil {
return false, fmt.Errorf("loading %q: %w", rpath, err)
}
}
idlist := make([]string, 0, len(images))
ids := make(map[string]*Image)
names := make(map[string]*Image)
digests := make(map[digest.Digest][]*Image)
var errorToResolveBySaving error // == nil
for n, image := range images {
ids[image.ID] = images[n]
idlist = append(idlist, image.ID)
for _, name := range image.Names {
if conflict, ok := names[name]; ok {
r.removeName(conflict, name)
errorToResolveBySaving = ErrDuplicateImageNames
}
}
// Compute the digest list.
if err := image.recomputeDigests(); err != nil {
return false, fmt.Errorf("computing digests for image with ID %q (%v): %w", image.ID, image.Names, err)
}
for _, name := range image.Names {
names[name] = image
}
for _, digest := range image.Digests {
list := digests[digest]
digests[digest] = append(list, image)
}
image.ReadOnly = !r.lockfile.IsReadWrite()
}
if errorToResolveBySaving != nil {
if !r.lockfile.IsReadWrite() {
return false, errorToResolveBySaving
}
if !lockedForWriting {
return true, errorToResolveBySaving
}
}
r.images = images
r.idindex = truncindex.NewTruncIndex(idlist) // Invalid values in idlist are ignored: they are not a reason to refuse processing the whole store.
r.byid = ids
r.byname = names
r.bydigest = digests
if errorToResolveBySaving != nil {
return false, r.Save()
}
return false, nil
}
// Save saves the contents of the store to disk.
// The caller must hold r.lockfile locked for writing.
// The caller must hold r.inProcessLock for reading (but usually holds it for writing in order to make the desired changes).
func (r *imageStore) Save() error {
if !r.lockfile.IsReadWrite() {
return fmt.Errorf("not allowed to modify the image store at %q: %w", r.imagespath(), ErrStoreIsReadOnly)
}
r.lockfile.AssertLockedForWriting()
rpath := r.imagespath()
if err := os.MkdirAll(filepath.Dir(rpath), 0o700); err != nil {
return err
}
jdata, err := json.Marshal(&r.images)
if err != nil {
return err
}
// This must be done before we write the file, because the process could be terminated
// after the file is written but before the lock file is updated.
lw, err := r.lockfile.RecordWrite()
if err != nil {
return err
}
r.lastWrite = lw
if err := ioutils.AtomicWriteFile(rpath, jdata, 0o600); err != nil {
return err
}
return nil
}
func newImageStore(dir string) (rwImageStore, error) {
if err := os.MkdirAll(dir, 0o700); err != nil {
return nil, err
}
lockfile, err := lockfile.GetLockFile(filepath.Join(dir, "images.lock"))
if err != nil {
return nil, err
}
istore := imageStore{
lockfile: lockfile,
dir: dir,
images: []*Image{},
byid: make(map[string]*Image),
byname: make(map[string]*Image),
bydigest: make(map[digest.Digest][]*Image),
}
if err := istore.startWritingWithReload(false); err != nil {
return nil, err
}
defer istore.stopWriting()
istore.lastWrite, err = istore.lockfile.GetLastWrite()
if err != nil {
return nil, err
}
if _, err := istore.load(true); err != nil {
return nil, err
}
return &istore, nil
}
func newROImageStore(dir string) (roImageStore, error) {
lockfile, err := lockfile.GetROLockFile(filepath.Join(dir, "images.lock"))
if err != nil {
return nil, err
}
istore := imageStore{
lockfile: lockfile,
dir: dir,
images: []*Image{},
byid: make(map[string]*Image),
byname: make(map[string]*Image),
bydigest: make(map[digest.Digest][]*Image),
}
if err := istore.startReadingWithReload(false); err != nil {
return nil, err
}
defer istore.stopReading()
istore.lastWrite, err = istore.lockfile.GetLastWrite()
if err != nil {
return nil, err
}
if _, err := istore.load(false); err != nil {
return nil, err
}
return &istore, nil
}
// Requires startReading or startWriting.
func (r *imageStore) lookup(id string) (*Image, bool) {
if image, ok := r.byid[id]; ok {
return image, ok
} else if image, ok := r.byname[id]; ok {
return image, ok
} else if longid, err := r.idindex.Get(id); err == nil {
image, ok := r.byid[longid]
return image, ok
}
return nil, false
}
// Requires startWriting.
func (r *imageStore) ClearFlag(id string, flag string) error {
if !r.lockfile.IsReadWrite() {
return fmt.Errorf("not allowed to clear flags on images at %q: %w", r.imagespath(), ErrStoreIsReadOnly)
}
image, ok := r.lookup(id)
if !ok {
return fmt.Errorf("locating image with ID %q: %w", id, ErrImageUnknown)
}
delete(image.Flags, flag)
return r.Save()
}
// Requires startWriting.
func (r *imageStore) SetFlag(id string, flag string, value any) error {
if !r.lockfile.IsReadWrite() {
return fmt.Errorf("not allowed to set flags on images at %q: %w", r.imagespath(), ErrStoreIsReadOnly)
}
image, ok := r.lookup(id)
if !ok {
return fmt.Errorf("locating image with ID %q: %w", id, ErrImageUnknown)
}
if image.Flags == nil {
image.Flags = make(map[string]any)
}
image.Flags[flag] = value
return r.Save()
}
// Requires startWriting.
func (r *imageStore) create(id string, names []string, layer string, options ImageOptions) (image *Image, err error) {
if !r.lockfile.IsReadWrite() {
return nil, fmt.Errorf("not allowed to create new images at %q: %w", r.imagespath(), ErrStoreIsReadOnly)
}
if id == "" {
id = stringid.GenerateRandomID()
_, idInUse := r.byid[id]
for idInUse {
id = stringid.GenerateRandomID()
_, idInUse = r.byid[id]
}
}
if _, idInUse := r.byid[id]; idInUse {
return nil, fmt.Errorf("an image with ID %q already exists: %w", id, ErrDuplicateID)
}
names = dedupeStrings(names)
for _, name := range names {
if image, nameInUse := r.byname[name]; nameInUse {
return nil, fmt.Errorf("image name %q is already associated with image %q: %w", name, image.ID, ErrDuplicateName)
}
}
image = &Image{
ID: id,
Digest: options.Digest,
Digests: dedupeDigests(options.Digests),
Names: names,
NamesHistory: copySlicePreferringNil(options.NamesHistory),
TopLayer: layer,
Metadata: options.Metadata,
BigDataNames: []string{},
BigDataSizes: make(map[string]int64),
BigDataDigests: make(map[string]digest.Digest),
Created: options.CreationDate,
Flags: newMapFrom(options.Flags),
}
if image.Created.IsZero() {
image.Created = time.Now().UTC()
}
err = image.recomputeDigests()
if err != nil {
return nil, fmt.Errorf("validating digests for new image: %w", err)
}
r.images = append(r.images, image)
// This can only fail on duplicate IDs, which shouldnt happen — and in
// that case the index is already in the desired state anyway.
// Implementing recovery from an unlikely and unimportant failure here
// would be too risky.
_ = r.idindex.Add(id)
r.byid[id] = image
for _, name := range names {
r.byname[name] = image
}
for _, digest := range image.Digests {
list := r.bydigest[digest]
r.bydigest[digest] = append(list, image)
}
defer func() {
if err != nil {
// now that the in-memory structures know about the new
// record, we can use regular Delete() to clean up if
// anything breaks from here on out
if e := r.Delete(id); e != nil {
logrus.Debugf("while cleaning up partially-created image %q we failed to create: %v", id, e)
}
}
}()
err = r.Save()
if err != nil {
return nil, err
}
for _, item := range options.BigData {
if item.Digest == "" {
item.Digest = digest.Canonical.FromBytes(item.Data)
}
if err = r.setBigData(image, item.Key, item.Data, item.Digest); err != nil {
return nil, err
}
}
image = copyImage(image)
return image, err
}
// Requires startWriting.
func (r *imageStore) addMappedTopLayer(id, layer string) error {
if image, ok := r.lookup(id); ok {
image.MappedTopLayers = append(image.MappedTopLayers, layer)
return r.Save()
}
return fmt.Errorf("locating image with ID %q: %w", id, ErrImageUnknown)
}
// Requires startWriting.
func (r *imageStore) removeMappedTopLayer(id, layer string) error {
if image, ok := r.lookup(id); ok {
initialLen := len(image.MappedTopLayers)
image.MappedTopLayers = stringutils.RemoveFromSlice(image.MappedTopLayers, layer)
// No layer was removed. No need to save.
if initialLen == len(image.MappedTopLayers) {
return nil
}
return r.Save()
}
return fmt.Errorf("locating image with ID %q: %w", id, ErrImageUnknown)
}
// Requires startReading or startWriting.
func (r *imageStore) Metadata(id string) (string, error) {
if image, ok := r.lookup(id); ok {
return image.Metadata, nil
}
return "", fmt.Errorf("locating image with ID %q: %w", id, ErrImageUnknown)
}
// Requires startWriting.
func (r *imageStore) SetMetadata(id, metadata string) error {
if !r.lockfile.IsReadWrite() {
return fmt.Errorf("not allowed to modify image metadata at %q: %w", r.imagespath(), ErrStoreIsReadOnly)
}
if image, ok := r.lookup(id); ok {
image.Metadata = metadata
return r.Save()
}
return fmt.Errorf("locating image with ID %q: %w", id, ErrImageUnknown)
}
// The caller must hold r.inProcessLock for writing.
func (r *imageStore) removeName(image *Image, name string) {
image.Names = stringSliceWithoutValue(image.Names, name)
}
// The caller must hold r.inProcessLock for writing.
func (i *Image) addNameToHistory(name string) {
i.NamesHistory = dedupeStrings(append([]string{name}, i.NamesHistory...))
}
// Requires startWriting.
func (r *imageStore) updateNames(id string, names []string, op updateNameOperation) error {
if !r.lockfile.IsReadWrite() {
return fmt.Errorf("not allowed to change image name assignments at %q: %w", r.imagespath(), ErrStoreIsReadOnly)
}
image, ok := r.lookup(id)
if !ok {
return fmt.Errorf("locating image with ID %q: %w", id, ErrImageUnknown)
}
oldNames := image.Names
names, err := applyNameOperation(oldNames, names, op)
if err != nil {
return err
}
for _, name := range oldNames {
delete(r.byname, name)
}
for _, name := range names {
if otherImage, ok := r.byname[name]; ok {
r.removeName(otherImage, name)
}
r.byname[name] = image
image.addNameToHistory(name)
}
image.Names = names
return r.Save()
}
// Requires startWriting.
func (r *imageStore) Delete(id string) error {
if !r.lockfile.IsReadWrite() {
return fmt.Errorf("not allowed to delete images at %q: %w", r.imagespath(), ErrStoreIsReadOnly)
}
image, ok := r.lookup(id)
if !ok {
return fmt.Errorf("locating image with ID %q: %w", id, ErrImageUnknown)
}
id = image.ID
delete(r.byid, id)
// This can only fail if the ID is already missing, which shouldnt happen — and in that case the index is already in the desired state anyway.
// The stores Delete method is used on various paths to recover from failures, so this should be robust against partially missing data.
_ = r.idindex.Delete(id)
for _, name := range image.Names {
delete(r.byname, name)
}
for _, digest := range image.Digests {
prunedList := slices.DeleteFunc(r.bydigest[digest], func(i *Image) bool {
return i == image
})
if len(prunedList) == 0 {
delete(r.bydigest, digest)
} else {
r.bydigest[digest] = prunedList
}
}
r.images = slices.DeleteFunc(r.images, func(candidate *Image) bool {
return candidate.ID == id
})
if err := r.Save(); err != nil {
return err
}
if err := os.RemoveAll(r.datadir(id)); err != nil {
return err
}
return nil
}
// Requires startReading or startWriting.
func (r *imageStore) Get(id string) (*Image, error) {
if image, ok := r.lookup(id); ok {
return copyImage(image), nil
}
return nil, fmt.Errorf("locating image with ID %q: %w", id, ErrImageUnknown)
}
// Requires startReading or startWriting.
func (r *imageStore) Exists(id string) bool {
_, ok := r.lookup(id)
return ok
}
// Requires startReading or startWriting.
func (r *imageStore) ByDigest(d digest.Digest) ([]*Image, error) {
if images, ok := r.bydigest[d]; ok {
return copyImageSlice(images), nil
}
return nil, fmt.Errorf("locating image with digest %q: %w", d, ErrImageUnknown)
}
// Requires startReading or startWriting.
func (r *imageStore) BigData(id, key string) ([]byte, error) {
if key == "" {
return nil, fmt.Errorf("can't retrieve image big data value for empty name: %w", ErrInvalidBigDataName)
}
image, ok := r.lookup(id)
if !ok {
return nil, fmt.Errorf("locating image with ID %q: %w", id, ErrImageUnknown)
}
return os.ReadFile(r.datapath(image.ID, key))
}
// Requires startReading or startWriting.
func (r *imageStore) BigDataSize(id, key string) (int64, error) {
if key == "" {
return -1, fmt.Errorf("can't retrieve size of image big data with empty name: %w", ErrInvalidBigDataName)
}
image, ok := r.lookup(id)
if !ok {
return -1, fmt.Errorf("locating image with ID %q: %w", id, ErrImageUnknown)
}
if size, ok := image.BigDataSizes[key]; ok { // This is valid, and returns ok == false, for BigDataSizes == nil.
return size, nil
}
if data, err := r.BigData(id, key); err == nil && data != nil {
return int64(len(data)), nil
}
return -1, ErrSizeUnknown
}
// Requires startReading or startWriting.
func (r *imageStore) BigDataDigest(id, key string) (digest.Digest, error) {
if key == "" {
return "", fmt.Errorf("can't retrieve digest of image big data value with empty name: %w", ErrInvalidBigDataName)
}
image, ok := r.lookup(id)
if !ok {
return "", fmt.Errorf("locating image with ID %q: %w", id, ErrImageUnknown)
}
if d, ok := image.BigDataDigests[key]; ok { // This is valid, and returns ok == false, for BigDataDigests == nil.
return d, nil
}
return "", ErrDigestUnknown
}
// Requires startReading or startWriting.
func (r *imageStore) BigDataNames(id string) ([]string, error) {
image, ok := r.lookup(id)
if !ok {
return nil, fmt.Errorf("locating image with ID %q: %w", id, ErrImageUnknown)
}
return copySlicePreferringNil(image.BigDataNames), nil
}
// Requires startWriting.
func (r *imageStore) SetBigData(id, key string, data []byte, digestManifest func([]byte) (digest.Digest, error)) error {
if !r.lockfile.IsReadWrite() {
return fmt.Errorf("not allowed to save data items associated with images at %q: %w", r.imagespath(), ErrStoreIsReadOnly)
}
image, ok := r.lookup(id)
if !ok {
return fmt.Errorf("locating image with ID %q: %w", id, ErrImageUnknown)
}
var err error
var newDigest digest.Digest
if bigDataNameIsManifest(key) {
if digestManifest == nil {
return fmt.Errorf("digesting manifest: no manifest digest callback provided: %w", ErrDigestUnknown)
}
if newDigest, err = digestManifest(data); err != nil {
return fmt.Errorf("digesting manifest: %w", err)
}
} else {
newDigest = digest.Canonical.FromBytes(data)
}
return r.setBigData(image, key, data, newDigest)
}
// Requires startWriting.
func (r *imageStore) setBigData(image *Image, key string, data []byte, newDigest digest.Digest) error {
if key == "" {
return fmt.Errorf("can't set empty name for image big data item: %w", ErrInvalidBigDataName)
}
err := os.MkdirAll(r.datadir(image.ID), 0o700)
if err != nil {
return err
}
err = ioutils.AtomicWriteFile(r.datapath(image.ID, key), data, 0o600)
if err == nil {
save := false
if image.BigDataSizes == nil {
image.BigDataSizes = make(map[string]int64)
}
oldSize, sizeOk := image.BigDataSizes[key]
image.BigDataSizes[key] = int64(len(data))
if image.BigDataDigests == nil {
image.BigDataDigests = make(map[string]digest.Digest)
}
oldDigest, digestOk := image.BigDataDigests[key]
image.BigDataDigests[key] = newDigest
if !sizeOk || oldSize != image.BigDataSizes[key] || !digestOk || oldDigest != newDigest {
save = true
}
if !slices.Contains(image.BigDataNames, key) {
image.BigDataNames = append(image.BigDataNames, key)
save = true
}
for _, oldDigest := range image.Digests {
// remove the image from the list of images in the digest-based index
if list, ok := r.bydigest[oldDigest]; ok {
prunedList := slices.DeleteFunc(list, func(i *Image) bool {
return i == image
})
if len(prunedList) == 0 {
delete(r.bydigest, oldDigest)
} else {
r.bydigest[oldDigest] = prunedList
}
}
}
if err = image.recomputeDigests(); err != nil {
return fmt.Errorf("loading recomputing image digest information for %s: %w", image.ID, err)
}
for _, newDigest := range image.Digests {
// add the image to the list of images in the digest-based index which
// corresponds to the new digest for this item, unless it's already there
list := r.bydigest[newDigest]
if !slices.Contains(list, image) {
r.bydigest[newDigest] = append(list, image)
}
}
if save {
err = r.Save()
}
}
return err
}
// Requires startWriting.
func (r *imageStore) Wipe() error {
if !r.lockfile.IsReadWrite() {
return fmt.Errorf("not allowed to delete images at %q: %w", r.imagespath(), ErrStoreIsReadOnly)
}
ids := make([]string, 0, len(r.byid))
for id := range r.byid {
ids = append(ids, id)
}
for _, id := range ids {
if err := r.Delete(id); err != nil {
return err
}
}
return nil
}