Use goreleaser to build and release (#244)

Instead of using gox on one side and an action to release, we can merge
them together with goreleaser which will build for extra targets (arm,
mips if needed in the future) and it also takes care of creating
checksums, a source archive, and a changelog and creating a release with
all the artifacts.

All binaries should respect the old naming convention, so any scripts
out there should still work.

Signed-off-by: Itxaka <igarcia@suse.com>
This commit is contained in:
Itxaka
2021-08-11 08:30:55 +02:00
committed by GitHub
parent 0a4fe57f33
commit 4adc0dc9b9
1133 changed files with 81678 additions and 85598 deletions

View File

@@ -12,11 +12,11 @@ but it can be used as a secondary step to compressors (like Snappy) that does no
* [Godoc documentation](https://godoc.org/github.com/klauspost/compress/huff0)
THIS PACKAGE IS NOT CONSIDERED STABLE AND API OR ENCODING MAY CHANGE IN THE FUTURE.
## News
* Mar 2018: First implementation released. Consider this beta software for now.
This is used as part of the [zstandard](https://github.com/klauspost/compress/tree/master/zstd#zstd) compression and decompression package.
This ensures that most functionality is well tested.
# Usage
@@ -75,6 +75,8 @@ which can be given to the decompressor.
Decompressing is done by calling the [`Decompress1X`](https://godoc.org/github.com/klauspost/compress/huff0#Scratch.Decompress1X)
or [`Decompress4X`](https://godoc.org/github.com/klauspost/compress/huff0#Scratch.Decompress4X) function.
For concurrently decompressing content with a fixed table a stateless [`Decoder`](https://godoc.org/github.com/klauspost/compress/huff0#Decoder) can be requested which will remain correct as long as the scratch is unchanged. The capacity of the provided slice indicates the expected output size.
You must provide the output from the compression stage, at exactly the size you got back. If you receive an error back
your input was likely corrupted.
@@ -84,4 +86,4 @@ There are no integrity checks, so relying on errors from the decompressor does n
# Contributing
Contributions are always welcome. Be aware that adding public functions will require good justification and breaking
changes will likely not be accepted. If in doubt open an issue before writing the PR.
changes will likely not be accepted. If in doubt open an issue before writing the PR.

View File

@@ -6,6 +6,7 @@
package huff0
import (
"encoding/binary"
"errors"
"io"
)
@@ -34,29 +35,16 @@ func (b *bitReader) init(in []byte) error {
}
b.bitsRead = 64
b.value = 0
b.fill()
b.fill()
if len(in) >= 8 {
b.fillFastStart()
} else {
b.fill()
b.fill()
}
b.bitsRead += 8 - uint8(highBit32(uint32(v)))
return nil
}
// getBits will return n bits. n can be 0.
func (b *bitReader) getBits(n uint8) uint16 {
if n == 0 || b.bitsRead >= 64 {
return 0
}
return b.getBitsFast(n)
}
// getBitsFast requires that at least one bit is requested every time.
// There are no checks if the buffer is filled.
func (b *bitReader) getBitsFast(n uint8) uint16 {
const regMask = 64 - 1
v := uint16((b.value << (b.bitsRead & regMask)) >> ((regMask + 1 - n) & regMask))
b.bitsRead += n
return v
}
// peekBitsFast requires that at least one bit is requested every time.
// There are no checks if the buffer is filled.
func (b *bitReader) peekBitsFast(n uint8) uint16 {
@@ -71,21 +59,36 @@ func (b *bitReader) fillFast() {
if b.bitsRead < 32 {
return
}
// Do single re-slice to avoid bounds checks.
// 2 bounds checks.
v := b.in[b.off-4 : b.off]
v = v[:4]
low := (uint32(v[0])) | (uint32(v[1]) << 8) | (uint32(v[2]) << 16) | (uint32(v[3]) << 24)
b.value = (b.value << 32) | uint64(low)
b.bitsRead -= 32
b.off -= 4
}
func (b *bitReader) advance(n uint8) {
b.bitsRead += n
}
// fillFastStart() assumes the bitreader is empty and there is at least 8 bytes to read.
func (b *bitReader) fillFastStart() {
// Do single re-slice to avoid bounds checks.
b.value = binary.LittleEndian.Uint64(b.in[b.off-8:])
b.bitsRead = 0
b.off -= 8
}
// fill() will make sure at least 32 bits are available.
func (b *bitReader) fill() {
if b.bitsRead < 32 {
return
}
if b.off > 4 {
v := b.in[b.off-4 : b.off]
v := b.in[b.off-4:]
v = v[:4]
low := (uint32(v[0])) | (uint32(v[1]) << 8) | (uint32(v[2]) << 16) | (uint32(v[3]) << 24)
b.value = (b.value << 32) | uint64(low)
b.bitsRead -= 32
@@ -113,3 +116,214 @@ func (b *bitReader) close() error {
}
return nil
}
// bitReader reads a bitstream in reverse.
// The last set bit indicates the start of the stream and is used
// for aligning the input.
type bitReaderBytes struct {
in []byte
off uint // next byte to read is at in[off - 1]
value uint64
bitsRead uint8
}
// init initializes and resets the bit reader.
func (b *bitReaderBytes) init(in []byte) error {
if len(in) < 1 {
return errors.New("corrupt stream: too short")
}
b.in = in
b.off = uint(len(in))
// The highest bit of the last byte indicates where to start
v := in[len(in)-1]
if v == 0 {
return errors.New("corrupt stream, did not find end of stream")
}
b.bitsRead = 64
b.value = 0
if len(in) >= 8 {
b.fillFastStart()
} else {
b.fill()
b.fill()
}
b.advance(8 - uint8(highBit32(uint32(v))))
return nil
}
// peekBitsFast requires that at least one bit is requested every time.
// There are no checks if the buffer is filled.
func (b *bitReaderBytes) peekByteFast() uint8 {
got := uint8(b.value >> 56)
return got
}
func (b *bitReaderBytes) advance(n uint8) {
b.bitsRead += n
b.value <<= n & 63
}
// fillFast() will make sure at least 32 bits are available.
// There must be at least 4 bytes available.
func (b *bitReaderBytes) fillFast() {
if b.bitsRead < 32 {
return
}
// 2 bounds checks.
v := b.in[b.off-4 : b.off]
v = v[:4]
low := (uint32(v[0])) | (uint32(v[1]) << 8) | (uint32(v[2]) << 16) | (uint32(v[3]) << 24)
b.value |= uint64(low) << (b.bitsRead - 32)
b.bitsRead -= 32
b.off -= 4
}
// fillFastStart() assumes the bitReaderBytes is empty and there is at least 8 bytes to read.
func (b *bitReaderBytes) fillFastStart() {
// Do single re-slice to avoid bounds checks.
b.value = binary.LittleEndian.Uint64(b.in[b.off-8:])
b.bitsRead = 0
b.off -= 8
}
// fill() will make sure at least 32 bits are available.
func (b *bitReaderBytes) fill() {
if b.bitsRead < 32 {
return
}
if b.off > 4 {
v := b.in[b.off-4:]
v = v[:4]
low := (uint32(v[0])) | (uint32(v[1]) << 8) | (uint32(v[2]) << 16) | (uint32(v[3]) << 24)
b.value |= uint64(low) << (b.bitsRead - 32)
b.bitsRead -= 32
b.off -= 4
return
}
for b.off > 0 {
b.value |= uint64(b.in[b.off-1]) << (b.bitsRead - 8)
b.bitsRead -= 8
b.off--
}
}
// finished returns true if all bits have been read from the bit stream.
func (b *bitReaderBytes) finished() bool {
return b.off == 0 && b.bitsRead >= 64
}
// close the bitstream and returns an error if out-of-buffer reads occurred.
func (b *bitReaderBytes) close() error {
// Release reference.
b.in = nil
if b.bitsRead > 64 {
return io.ErrUnexpectedEOF
}
return nil
}
// bitReaderShifted reads a bitstream in reverse.
// The last set bit indicates the start of the stream and is used
// for aligning the input.
type bitReaderShifted struct {
in []byte
off uint // next byte to read is at in[off - 1]
value uint64
bitsRead uint8
}
// init initializes and resets the bit reader.
func (b *bitReaderShifted) init(in []byte) error {
if len(in) < 1 {
return errors.New("corrupt stream: too short")
}
b.in = in
b.off = uint(len(in))
// The highest bit of the last byte indicates where to start
v := in[len(in)-1]
if v == 0 {
return errors.New("corrupt stream, did not find end of stream")
}
b.bitsRead = 64
b.value = 0
if len(in) >= 8 {
b.fillFastStart()
} else {
b.fill()
b.fill()
}
b.advance(8 - uint8(highBit32(uint32(v))))
return nil
}
// peekBitsFast requires that at least one bit is requested every time.
// There are no checks if the buffer is filled.
func (b *bitReaderShifted) peekBitsFast(n uint8) uint16 {
return uint16(b.value >> ((64 - n) & 63))
}
func (b *bitReaderShifted) advance(n uint8) {
b.bitsRead += n
b.value <<= n & 63
}
// fillFast() will make sure at least 32 bits are available.
// There must be at least 4 bytes available.
func (b *bitReaderShifted) fillFast() {
if b.bitsRead < 32 {
return
}
// 2 bounds checks.
v := b.in[b.off-4 : b.off]
v = v[:4]
low := (uint32(v[0])) | (uint32(v[1]) << 8) | (uint32(v[2]) << 16) | (uint32(v[3]) << 24)
b.value |= uint64(low) << ((b.bitsRead - 32) & 63)
b.bitsRead -= 32
b.off -= 4
}
// fillFastStart() assumes the bitReaderShifted is empty and there is at least 8 bytes to read.
func (b *bitReaderShifted) fillFastStart() {
// Do single re-slice to avoid bounds checks.
b.value = binary.LittleEndian.Uint64(b.in[b.off-8:])
b.bitsRead = 0
b.off -= 8
}
// fill() will make sure at least 32 bits are available.
func (b *bitReaderShifted) fill() {
if b.bitsRead < 32 {
return
}
if b.off > 4 {
v := b.in[b.off-4:]
v = v[:4]
low := (uint32(v[0])) | (uint32(v[1]) << 8) | (uint32(v[2]) << 16) | (uint32(v[3]) << 24)
b.value |= uint64(low) << ((b.bitsRead - 32) & 63)
b.bitsRead -= 32
b.off -= 4
return
}
for b.off > 0 {
b.value |= uint64(b.in[b.off-1]) << ((b.bitsRead - 8) & 63)
b.bitsRead -= 8
b.off--
}
}
// finished returns true if all bits have been read from the bit stream.
func (b *bitReaderShifted) finished() bool {
return b.off == 0 && b.bitsRead >= 64
}
// close the bitstream and returns an error if out-of-buffer reads occurred.
func (b *bitReaderShifted) close() error {
// Release reference.
b.in = nil
if b.bitsRead > 64 {
return io.ErrUnexpectedEOF
}
return nil
}

View File

@@ -38,14 +38,38 @@ func (b *bitWriter) addBits16Clean(value uint16, bits uint8) {
b.nBits += bits
}
// addBits16Clean will add up to 16 bits. value may not contain more set bits than indicated.
// encSymbol will add up to 16 bits. value may not contain more set bits than indicated.
// It will not check if there is space for them, so the caller must ensure that it has flushed recently.
func (b *bitWriter) encSymbol(ct cTable, symbol byte) {
enc := ct[symbol]
b.bitContainer |= uint64(enc.val) << (b.nBits & 63)
if false {
if enc.nBits == 0 {
panic("nbits 0")
}
}
b.nBits += enc.nBits
}
// encTwoSymbols will add up to 32 bits. value may not contain more set bits than indicated.
// It will not check if there is space for them, so the caller must ensure that it has flushed recently.
func (b *bitWriter) encTwoSymbols(ct cTable, av, bv byte) {
encA := ct[av]
encB := ct[bv]
sh := b.nBits & 63
combined := uint64(encA.val) | (uint64(encB.val) << (encA.nBits & 63))
b.bitContainer |= combined << sh
if false {
if encA.nBits == 0 {
panic("nbitsA 0")
}
if encB.nBits == 0 {
panic("nbitsB 0")
}
}
b.nBits += encA.nBits + encB.nBits
}
// addBits16ZeroNC will add up to 16 bits.
// It will not check if there is space for them,
// so the caller must ensure that it has flushed recently.

View File

@@ -54,6 +54,12 @@ func compress(in []byte, s *Scratch, compressor func(src []byte) ([]byte, error)
canReuse = s.canUseTable(s.prevTable)
}
// We want the output size to be less than this:
wantSize := len(in)
if s.WantLogLess > 0 {
wantSize -= wantSize >> s.WantLogLess
}
// Reset for next run.
s.clearCount = true
s.maxCount = 0
@@ -71,22 +77,30 @@ func compress(in []byte, s *Scratch, compressor func(src []byte) ([]byte, error)
// Each symbol present maximum once or too well distributed.
return nil, false, ErrIncompressible
}
if s.Reuse == ReusePolicyPrefer && canReuse {
if s.Reuse == ReusePolicyMust && !canReuse {
// We must reuse, but we can't.
return nil, false, ErrIncompressible
}
if (s.Reuse == ReusePolicyPrefer || s.Reuse == ReusePolicyMust) && canReuse {
keepTable := s.cTable
keepTL := s.actualTableLog
s.cTable = s.prevTable
s.actualTableLog = s.prevTableLog
s.Out, err = compressor(in)
s.cTable = keepTable
if err == nil && len(s.Out) < len(in) {
s.actualTableLog = keepTL
if err == nil && len(s.Out) < wantSize {
s.OutData = s.Out
return s.Out, true, nil
}
if s.Reuse == ReusePolicyMust {
return nil, false, ErrIncompressible
}
// Do not attempt to re-use later.
s.prevTable = s.prevTable[:0]
}
// Calculate new table.
s.optimalTableLog()
err = s.buildCTable()
if err != nil {
return nil, false, err
@@ -100,13 +114,22 @@ func compress(in []byte, s *Scratch, compressor func(src []byte) ([]byte, error)
hSize := len(s.Out)
oldSize := s.prevTable.estimateSize(s.count[:s.symbolLen])
newSize := s.cTable.estimateSize(s.count[:s.symbolLen])
if oldSize <= hSize+newSize || hSize+12 >= len(in) {
if oldSize <= hSize+newSize || hSize+12 >= wantSize {
// Retain cTable even if we re-use.
keepTable := s.cTable
keepTL := s.actualTableLog
s.cTable = s.prevTable
s.actualTableLog = s.prevTableLog
s.Out, err = compressor(in)
// Restore ctable.
s.cTable = keepTable
if len(s.Out) >= len(in) {
s.actualTableLog = keepTL
if err != nil {
return nil, false, err
}
if len(s.Out) >= wantSize {
return nil, false, ErrIncompressible
}
s.OutData = s.Out
@@ -128,12 +151,12 @@ func compress(in []byte, s *Scratch, compressor func(src []byte) ([]byte, error)
s.OutTable = nil
return nil, false, err
}
if len(s.Out) >= len(in) {
if len(s.Out) >= wantSize {
s.OutTable = nil
return nil, false, ErrIncompressible
}
// Move current table into previous.
s.prevTable, s.cTable = s.cTable, s.prevTable[:0]
s.prevTable, s.prevTableLog, s.cTable = s.cTable, s.actualTableLog, s.prevTable[:0]
s.OutData = s.Out[len(s.OutTable):]
return s.Out, false, nil
}
@@ -154,28 +177,23 @@ func (s *Scratch) compress1xDo(dst, src []byte) ([]byte, error) {
for i := len(src) & 3; i > 0; i-- {
bw.encSymbol(cTable, src[n+i-1])
}
n -= 4
if s.actualTableLog <= 8 {
n -= 4
for ; n >= 0; n -= 4 {
tmp := src[n : n+4]
// tmp should be len 4
bw.flush32()
bw.encSymbol(cTable, tmp[3])
bw.encSymbol(cTable, tmp[2])
bw.encSymbol(cTable, tmp[1])
bw.encSymbol(cTable, tmp[0])
bw.encTwoSymbols(cTable, tmp[3], tmp[2])
bw.encTwoSymbols(cTable, tmp[1], tmp[0])
}
} else {
n -= 4
for ; n >= 0; n -= 4 {
tmp := src[n : n+4]
// tmp should be len 4
bw.flush32()
bw.encSymbol(cTable, tmp[3])
bw.encSymbol(cTable, tmp[2])
bw.encTwoSymbols(cTable, tmp[3], tmp[2])
bw.flush32()
bw.encSymbol(cTable, tmp[1])
bw.encSymbol(cTable, tmp[0])
bw.encTwoSymbols(cTable, tmp[1], tmp[0])
}
}
err := bw.close()
@@ -313,9 +331,26 @@ func (s *Scratch) canUseTable(c cTable) bool {
return true
}
func (s *Scratch) validateTable(c cTable) bool {
if len(c) < int(s.symbolLen) {
return false
}
for i, v := range s.count[:s.symbolLen] {
if v != 0 {
if c[i].nBits == 0 {
return false
}
if c[i].nBits > s.actualTableLog {
return false
}
}
}
return true
}
// minTableLog provides the minimum logSize to safely represent a distribution.
func (s *Scratch) minTableLog() uint8 {
minBitsSrc := highBit32(uint32(s.br.remain()-1)) + 1
minBitsSrc := highBit32(uint32(s.br.remain())) + 1
minBitsSymbols := highBit32(uint32(s.symbolLen-1)) + 2
if minBitsSrc < minBitsSymbols {
return uint8(minBitsSrc)
@@ -327,7 +362,7 @@ func (s *Scratch) minTableLog() uint8 {
func (s *Scratch) optimalTableLog() {
tableLog := s.TableLog
minBits := s.minTableLog()
maxBitsSrc := uint8(highBit32(uint32(s.br.remain()-1))) - 2
maxBitsSrc := uint8(highBit32(uint32(s.br.remain()-1))) - 1
if maxBitsSrc < tableLog {
// Accuracy can be reduced
tableLog = maxBitsSrc
@@ -354,6 +389,7 @@ type cTableEntry struct {
const huffNodesMask = huffNodesLen - 1
func (s *Scratch) buildCTable() error {
s.optimalTableLog()
s.huffSort()
if cap(s.cTable) < maxSymbolValue+1 {
s.cTable = make([]cTableEntry, s.symbolLen, maxSymbolValue+1)
@@ -367,7 +403,7 @@ func (s *Scratch) buildCTable() error {
var startNode = int16(s.symbolLen)
nonNullRank := s.symbolLen - 1
nodeNb := int16(startNode)
nodeNb := startNode
huffNode := s.nodes[1 : huffNodesLen+1]
// This overlays the slice above, but allows "-1" index lookups.
@@ -430,7 +466,7 @@ func (s *Scratch) buildCTable() error {
return fmt.Errorf("internal error: maxNbBits (%d) > tableLogMax (%d)", maxNbBits, tableLogMax)
}
var nbPerRank [tableLogMax + 1]uint16
var valPerRank [tableLogMax + 1]uint16
var valPerRank [16]uint16
for _, v := range huffNode[:nonNullRank+1] {
nbPerRank[v.nbBits]++
}
@@ -446,16 +482,17 @@ func (s *Scratch) buildCTable() error {
}
// push nbBits per symbol, symbol order
// TODO: changed `s.symbolLen` -> `nonNullRank+1` (micro-opt)
for _, v := range huffNode[:nonNullRank+1] {
s.cTable[v.symbol].nBits = v.nbBits
}
// assign value within rank, symbol order
for n, val := range s.cTable[:s.symbolLen] {
v := valPerRank[val.nBits]
s.cTable[n].val = v
valPerRank[val.nBits] = v + 1
t := s.cTable[:s.symbolLen]
for n, val := range t {
nbits := val.nBits & 15
v := valPerRank[nbits]
t[n].val = v
valPerRank[nbits] = v + 1
}
return nil
@@ -479,10 +516,12 @@ func (s *Scratch) huffSort() {
r := highBit32(v+1) & 31
rank[r].base++
}
for n := 30; n > 0; n-- {
// maxBitLength is log2(BlockSizeMax) + 1
const maxBitLength = 18 + 1
for n := maxBitLength; n > 0; n-- {
rank[n-1].base += rank[n].base
}
for n := range rank[:] {
for n := range rank[:maxBitLength] {
rank[n].current = rank[n].base
}
for n, c := range s.count[:s.symbolLen] {
@@ -497,11 +536,10 @@ func (s *Scratch) huffSort() {
}
nodes[pos&huffNodesMask] = nodeElt{count: c, symbol: byte(n)}
}
return
}
func (s *Scratch) setMaxHeight(lastNonNull int) uint8 {
maxNbBits := s.TableLog
maxNbBits := s.actualTableLog
huffNode := s.nodes[1 : huffNodesLen+1]
//huffNode = huffNode[: huffNodesLen]
@@ -541,7 +579,7 @@ func (s *Scratch) setMaxHeight(lastNonNull int) uint8 {
// Get pos of last (smallest) symbol per rank
{
currentNbBits := uint8(maxNbBits)
currentNbBits := maxNbBits
for pos := int(n); pos >= 0; pos-- {
if huffNode[pos].nbBits >= currentNbBits {
continue

File diff suppressed because it is too large Load Diff

View File

@@ -55,6 +55,9 @@ const (
// ReusePolicyNone will disable re-use of tables.
// This is slightly faster than ReusePolicyAllow but may produce larger output.
ReusePolicyNone
// ReusePolicyMust must allow reuse and produce smaller output.
ReusePolicyMust
)
type Scratch struct {
@@ -79,26 +82,34 @@ type Scratch struct {
// Slice of the returned data.
OutData []byte
// MaxSymbolValue will override the maximum symbol value of the next block.
MaxSymbolValue uint8
// TableLog will attempt to override the tablelog for the next block.
// Must be <= 11.
TableLog uint8
// Reuse will specify the reuse policy
Reuse ReusePolicy
// MaxDecodedSize will set the maximum allowed output size.
// This value will automatically be set to BlockSizeMax if not set.
// Decoders will return ErrMaxDecodedSizeExceeded is this limit is exceeded.
MaxDecodedSize int
br byteReader
br byteReader
// MaxSymbolValue will override the maximum symbol value of the next block.
MaxSymbolValue uint8
// TableLog will attempt to override the tablelog for the next block.
// Must be <= 11 and >= 5.
TableLog uint8
// Reuse will specify the reuse policy
Reuse ReusePolicy
// WantLogLess allows to specify a log 2 reduction that should at least be achieved,
// otherwise the block will be returned as incompressible.
// The reduction should then at least be (input size >> WantLogLess)
// If WantLogLess == 0 any improvement will do.
WantLogLess uint8
symbolLen uint16 // Length of active part of the symbol table.
maxCount int // count of the most probable symbol
clearCount bool // clear count
actualTableLog uint8 // Selected tablelog.
prevTableLog uint8 // Tablelog for previous table
prevTable cTable // Table used for previous compression.
cTable cTable // compression table
dt dTable // decompression table
@@ -108,6 +119,16 @@ type Scratch struct {
huffWeight [maxSymbolValue + 1]byte
}
// TransferCTable will transfer the previously used compression table.
func (s *Scratch) TransferCTable(src *Scratch) {
if cap(s.prevTable) < len(src.prevTable) {
s.prevTable = make(cTable, 0, maxSymbolValue+1)
}
s.prevTable = s.prevTable[:len(src.prevTable)]
copy(s.prevTable, src.prevTable)
s.prevTableLog = src.prevTableLog
}
func (s *Scratch) prepare(in []byte) (*Scratch, error) {
if len(in) > BlockSizeMax {
return nil, ErrTooBig
@@ -121,8 +142,8 @@ func (s *Scratch) prepare(in []byte) (*Scratch, error) {
if s.TableLog == 0 {
s.TableLog = tableLogDefault
}
if s.TableLog > tableLogMax {
return nil, fmt.Errorf("tableLog (%d) > maxTableLog (%d)", s.TableLog, tableLogMax)
if s.TableLog > tableLogMax || s.TableLog < minTablelog {
return nil, fmt.Errorf(" invalid tableLog %d (%d -> %d)", s.TableLog, minTablelog, tableLogMax)
}
if s.MaxDecodedSize <= 0 || s.MaxDecodedSize > BlockSizeMax {
s.MaxDecodedSize = BlockSizeMax