mirror of
https://github.com/mudler/luet.git
synced 2025-09-01 07:09:13 +00:00
Update vendor
This commit is contained in:
1
vendor/github.com/google/btree/.travis.yml
generated
vendored
Normal file
1
vendor/github.com/google/btree/.travis.yml
generated
vendored
Normal file
@@ -0,0 +1 @@
|
||||
language: go
|
202
vendor/github.com/google/btree/LICENSE
generated
vendored
Normal file
202
vendor/github.com/google/btree/LICENSE
generated
vendored
Normal file
@@ -0,0 +1,202 @@
|
||||
|
||||
Apache License
|
||||
Version 2.0, January 2004
|
||||
http://www.apache.org/licenses/
|
||||
|
||||
TERMS AND CONDITIONS FOR USE, REPRODUCTION, AND DISTRIBUTION
|
||||
|
||||
1. Definitions.
|
||||
|
||||
"License" shall mean the terms and conditions for use, reproduction,
|
||||
and distribution as defined by Sections 1 through 9 of this document.
|
||||
|
||||
"Licensor" shall mean the copyright owner or entity authorized by
|
||||
the copyright owner that is granting the License.
|
||||
|
||||
"Legal Entity" shall mean the union of the acting entity and all
|
||||
other entities that control, are controlled by, or are under common
|
||||
control with that entity. For the purposes of this definition,
|
||||
"control" means (i) the power, direct or indirect, to cause the
|
||||
direction or management of such entity, whether by contract or
|
||||
otherwise, or (ii) ownership of fifty percent (50%) or more of the
|
||||
outstanding shares, or (iii) beneficial ownership of such entity.
|
||||
|
||||
"You" (or "Your") shall mean an individual or Legal Entity
|
||||
exercising permissions granted by this License.
|
||||
|
||||
"Source" form shall mean the preferred form for making modifications,
|
||||
including but not limited to software source code, documentation
|
||||
source, and configuration files.
|
||||
|
||||
"Object" form shall mean any form resulting from mechanical
|
||||
transformation or translation of a Source form, including but
|
||||
not limited to compiled object code, generated documentation,
|
||||
and conversions to other media types.
|
||||
|
||||
"Work" shall mean the work of authorship, whether in Source or
|
||||
Object form, made available under the License, as indicated by a
|
||||
copyright notice that is included in or attached to the work
|
||||
(an example is provided in the Appendix below).
|
||||
|
||||
"Derivative Works" shall mean any work, whether in Source or Object
|
||||
form, that is based on (or derived from) the Work and for which the
|
||||
editorial revisions, annotations, elaborations, or other modifications
|
||||
represent, as a whole, an original work of authorship. For the purposes
|
||||
of this License, Derivative Works shall not include works that remain
|
||||
separable from, or merely link (or bind by name) to the interfaces of,
|
||||
the Work and Derivative Works thereof.
|
||||
|
||||
"Contribution" shall mean any work of authorship, including
|
||||
the original version of the Work and any modifications or additions
|
||||
to that Work or Derivative Works thereof, that is intentionally
|
||||
submitted to Licensor for inclusion in the Work by the copyright owner
|
||||
or by an individual or Legal Entity authorized to submit on behalf of
|
||||
the copyright owner. For the purposes of this definition, "submitted"
|
||||
means any form of electronic, verbal, or written communication sent
|
||||
to the Licensor or its representatives, including but not limited to
|
||||
communication on electronic mailing lists, source code control systems,
|
||||
and issue tracking systems that are managed by, or on behalf of, the
|
||||
Licensor for the purpose of discussing and improving the Work, but
|
||||
excluding communication that is conspicuously marked or otherwise
|
||||
designated in writing by the copyright owner as "Not a Contribution."
|
||||
|
||||
"Contributor" shall mean Licensor and any individual or Legal Entity
|
||||
on behalf of whom a Contribution has been received by Licensor and
|
||||
subsequently incorporated within the Work.
|
||||
|
||||
2. Grant of Copyright License. Subject to the terms and conditions of
|
||||
this License, each Contributor hereby grants to You a perpetual,
|
||||
worldwide, non-exclusive, no-charge, royalty-free, irrevocable
|
||||
copyright license to reproduce, prepare Derivative Works of,
|
||||
publicly display, publicly perform, sublicense, and distribute the
|
||||
Work and such Derivative Works in Source or Object form.
|
||||
|
||||
3. Grant of Patent License. Subject to the terms and conditions of
|
||||
this License, each Contributor hereby grants to You a perpetual,
|
||||
worldwide, non-exclusive, no-charge, royalty-free, irrevocable
|
||||
(except as stated in this section) patent license to make, have made,
|
||||
use, offer to sell, sell, import, and otherwise transfer the Work,
|
||||
where such license applies only to those patent claims licensable
|
||||
by such Contributor that are necessarily infringed by their
|
||||
Contribution(s) alone or by combination of their Contribution(s)
|
||||
with the Work to which such Contribution(s) was submitted. If You
|
||||
institute patent litigation against any entity (including a
|
||||
cross-claim or counterclaim in a lawsuit) alleging that the Work
|
||||
or a Contribution incorporated within the Work constitutes direct
|
||||
or contributory patent infringement, then any patent licenses
|
||||
granted to You under this License for that Work shall terminate
|
||||
as of the date such litigation is filed.
|
||||
|
||||
4. Redistribution. You may reproduce and distribute copies of the
|
||||
Work or Derivative Works thereof in any medium, with or without
|
||||
modifications, and in Source or Object form, provided that You
|
||||
meet the following conditions:
|
||||
|
||||
(a) You must give any other recipients of the Work or
|
||||
Derivative Works a copy of this License; and
|
||||
|
||||
(b) You must cause any modified files to carry prominent notices
|
||||
stating that You changed the files; and
|
||||
|
||||
(c) You must retain, in the Source form of any Derivative Works
|
||||
that You distribute, all copyright, patent, trademark, and
|
||||
attribution notices from the Source form of the Work,
|
||||
excluding those notices that do not pertain to any part of
|
||||
the Derivative Works; and
|
||||
|
||||
(d) If the Work includes a "NOTICE" text file as part of its
|
||||
distribution, then any Derivative Works that You distribute must
|
||||
include a readable copy of the attribution notices contained
|
||||
within such NOTICE file, excluding those notices that do not
|
||||
pertain to any part of the Derivative Works, in at least one
|
||||
of the following places: within a NOTICE text file distributed
|
||||
as part of the Derivative Works; within the Source form or
|
||||
documentation, if provided along with the Derivative Works; or,
|
||||
within a display generated by the Derivative Works, if and
|
||||
wherever such third-party notices normally appear. The contents
|
||||
of the NOTICE file are for informational purposes only and
|
||||
do not modify the License. You may add Your own attribution
|
||||
notices within Derivative Works that You distribute, alongside
|
||||
or as an addendum to the NOTICE text from the Work, provided
|
||||
that such additional attribution notices cannot be construed
|
||||
as modifying the License.
|
||||
|
||||
You may add Your own copyright statement to Your modifications and
|
||||
may provide additional or different license terms and conditions
|
||||
for use, reproduction, or distribution of Your modifications, or
|
||||
for any such Derivative Works as a whole, provided Your use,
|
||||
reproduction, and distribution of the Work otherwise complies with
|
||||
the conditions stated in this License.
|
||||
|
||||
5. Submission of Contributions. Unless You explicitly state otherwise,
|
||||
any Contribution intentionally submitted for inclusion in the Work
|
||||
by You to the Licensor shall be under the terms and conditions of
|
||||
this License, without any additional terms or conditions.
|
||||
Notwithstanding the above, nothing herein shall supersede or modify
|
||||
the terms of any separate license agreement you may have executed
|
||||
with Licensor regarding such Contributions.
|
||||
|
||||
6. Trademarks. This License does not grant permission to use the trade
|
||||
names, trademarks, service marks, or product names of the Licensor,
|
||||
except as required for reasonable and customary use in describing the
|
||||
origin of the Work and reproducing the content of the NOTICE file.
|
||||
|
||||
7. Disclaimer of Warranty. Unless required by applicable law or
|
||||
agreed to in writing, Licensor provides the Work (and each
|
||||
Contributor provides its Contributions) on an "AS IS" BASIS,
|
||||
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or
|
||||
implied, including, without limitation, any warranties or conditions
|
||||
of TITLE, NON-INFRINGEMENT, MERCHANTABILITY, or FITNESS FOR A
|
||||
PARTICULAR PURPOSE. You are solely responsible for determining the
|
||||
appropriateness of using or redistributing the Work and assume any
|
||||
risks associated with Your exercise of permissions under this License.
|
||||
|
||||
8. Limitation of Liability. In no event and under no legal theory,
|
||||
whether in tort (including negligence), contract, or otherwise,
|
||||
unless required by applicable law (such as deliberate and grossly
|
||||
negligent acts) or agreed to in writing, shall any Contributor be
|
||||
liable to You for damages, including any direct, indirect, special,
|
||||
incidental, or consequential damages of any character arising as a
|
||||
result of this License or out of the use or inability to use the
|
||||
Work (including but not limited to damages for loss of goodwill,
|
||||
work stoppage, computer failure or malfunction, or any and all
|
||||
other commercial damages or losses), even if such Contributor
|
||||
has been advised of the possibility of such damages.
|
||||
|
||||
9. Accepting Warranty or Additional Liability. While redistributing
|
||||
the Work or Derivative Works thereof, You may choose to offer,
|
||||
and charge a fee for, acceptance of support, warranty, indemnity,
|
||||
or other liability obligations and/or rights consistent with this
|
||||
License. However, in accepting such obligations, You may act only
|
||||
on Your own behalf and on Your sole responsibility, not on behalf
|
||||
of any other Contributor, and only if You agree to indemnify,
|
||||
defend, and hold each Contributor harmless for any liability
|
||||
incurred by, or claims asserted against, such Contributor by reason
|
||||
of your accepting any such warranty or additional liability.
|
||||
|
||||
END OF TERMS AND CONDITIONS
|
||||
|
||||
APPENDIX: How to apply the Apache License to your work.
|
||||
|
||||
To apply the Apache License to your work, attach the following
|
||||
boilerplate notice, with the fields enclosed by brackets "[]"
|
||||
replaced with your own identifying information. (Don't include
|
||||
the brackets!) The text should be enclosed in the appropriate
|
||||
comment syntax for the file format. We also recommend that a
|
||||
file or class name and description of purpose be included on the
|
||||
same "printed page" as the copyright notice for easier
|
||||
identification within third-party archives.
|
||||
|
||||
Copyright [yyyy] [name of copyright owner]
|
||||
|
||||
Licensed under the Apache License, Version 2.0 (the "License");
|
||||
you may not use this file except in compliance with the License.
|
||||
You may obtain a copy of the License at
|
||||
|
||||
http://www.apache.org/licenses/LICENSE-2.0
|
||||
|
||||
Unless required by applicable law or agreed to in writing, software
|
||||
distributed under the License is distributed on an "AS IS" BASIS,
|
||||
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
See the License for the specific language governing permissions and
|
||||
limitations under the License.
|
12
vendor/github.com/google/btree/README.md
generated
vendored
Normal file
12
vendor/github.com/google/btree/README.md
generated
vendored
Normal file
@@ -0,0 +1,12 @@
|
||||
# BTree implementation for Go
|
||||
|
||||

|
||||
|
||||
This package provides an in-memory B-Tree implementation for Go, useful as
|
||||
an ordered, mutable data structure.
|
||||
|
||||
The API is based off of the wonderful
|
||||
http://godoc.org/github.com/petar/GoLLRB/llrb, and is meant to allow btree to
|
||||
act as a drop-in replacement for gollrb trees.
|
||||
|
||||
See http://godoc.org/github.com/google/btree for documentation.
|
890
vendor/github.com/google/btree/btree.go
generated
vendored
Normal file
890
vendor/github.com/google/btree/btree.go
generated
vendored
Normal file
@@ -0,0 +1,890 @@
|
||||
// Copyright 2014 Google Inc.
|
||||
//
|
||||
// Licensed under the Apache License, Version 2.0 (the "License");
|
||||
// you may not use this file except in compliance with the License.
|
||||
// You may obtain a copy of the License at
|
||||
//
|
||||
// http://www.apache.org/licenses/LICENSE-2.0
|
||||
//
|
||||
// Unless required by applicable law or agreed to in writing, software
|
||||
// distributed under the License is distributed on an "AS IS" BASIS,
|
||||
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
// See the License for the specific language governing permissions and
|
||||
// limitations under the License.
|
||||
|
||||
// Package btree implements in-memory B-Trees of arbitrary degree.
|
||||
//
|
||||
// btree implements an in-memory B-Tree for use as an ordered data structure.
|
||||
// It is not meant for persistent storage solutions.
|
||||
//
|
||||
// It has a flatter structure than an equivalent red-black or other binary tree,
|
||||
// which in some cases yields better memory usage and/or performance.
|
||||
// See some discussion on the matter here:
|
||||
// http://google-opensource.blogspot.com/2013/01/c-containers-that-save-memory-and-time.html
|
||||
// Note, though, that this project is in no way related to the C++ B-Tree
|
||||
// implementation written about there.
|
||||
//
|
||||
// Within this tree, each node contains a slice of items and a (possibly nil)
|
||||
// slice of children. For basic numeric values or raw structs, this can cause
|
||||
// efficiency differences when compared to equivalent C++ template code that
|
||||
// stores values in arrays within the node:
|
||||
// * Due to the overhead of storing values as interfaces (each
|
||||
// value needs to be stored as the value itself, then 2 words for the
|
||||
// interface pointing to that value and its type), resulting in higher
|
||||
// memory use.
|
||||
// * Since interfaces can point to values anywhere in memory, values are
|
||||
// most likely not stored in contiguous blocks, resulting in a higher
|
||||
// number of cache misses.
|
||||
// These issues don't tend to matter, though, when working with strings or other
|
||||
// heap-allocated structures, since C++-equivalent structures also must store
|
||||
// pointers and also distribute their values across the heap.
|
||||
//
|
||||
// This implementation is designed to be a drop-in replacement to gollrb.LLRB
|
||||
// trees, (http://github.com/petar/gollrb), an excellent and probably the most
|
||||
// widely used ordered tree implementation in the Go ecosystem currently.
|
||||
// Its functions, therefore, exactly mirror those of
|
||||
// llrb.LLRB where possible. Unlike gollrb, though, we currently don't
|
||||
// support storing multiple equivalent values.
|
||||
package btree
|
||||
|
||||
import (
|
||||
"fmt"
|
||||
"io"
|
||||
"sort"
|
||||
"strings"
|
||||
"sync"
|
||||
)
|
||||
|
||||
// Item represents a single object in the tree.
|
||||
type Item interface {
|
||||
// Less tests whether the current item is less than the given argument.
|
||||
//
|
||||
// This must provide a strict weak ordering.
|
||||
// If !a.Less(b) && !b.Less(a), we treat this to mean a == b (i.e. we can only
|
||||
// hold one of either a or b in the tree).
|
||||
Less(than Item) bool
|
||||
}
|
||||
|
||||
const (
|
||||
DefaultFreeListSize = 32
|
||||
)
|
||||
|
||||
var (
|
||||
nilItems = make(items, 16)
|
||||
nilChildren = make(children, 16)
|
||||
)
|
||||
|
||||
// FreeList represents a free list of btree nodes. By default each
|
||||
// BTree has its own FreeList, but multiple BTrees can share the same
|
||||
// FreeList.
|
||||
// Two Btrees using the same freelist are safe for concurrent write access.
|
||||
type FreeList struct {
|
||||
mu sync.Mutex
|
||||
freelist []*node
|
||||
}
|
||||
|
||||
// NewFreeList creates a new free list.
|
||||
// size is the maximum size of the returned free list.
|
||||
func NewFreeList(size int) *FreeList {
|
||||
return &FreeList{freelist: make([]*node, 0, size)}
|
||||
}
|
||||
|
||||
func (f *FreeList) newNode() (n *node) {
|
||||
f.mu.Lock()
|
||||
index := len(f.freelist) - 1
|
||||
if index < 0 {
|
||||
f.mu.Unlock()
|
||||
return new(node)
|
||||
}
|
||||
n = f.freelist[index]
|
||||
f.freelist[index] = nil
|
||||
f.freelist = f.freelist[:index]
|
||||
f.mu.Unlock()
|
||||
return
|
||||
}
|
||||
|
||||
// freeNode adds the given node to the list, returning true if it was added
|
||||
// and false if it was discarded.
|
||||
func (f *FreeList) freeNode(n *node) (out bool) {
|
||||
f.mu.Lock()
|
||||
if len(f.freelist) < cap(f.freelist) {
|
||||
f.freelist = append(f.freelist, n)
|
||||
out = true
|
||||
}
|
||||
f.mu.Unlock()
|
||||
return
|
||||
}
|
||||
|
||||
// ItemIterator allows callers of Ascend* to iterate in-order over portions of
|
||||
// the tree. When this function returns false, iteration will stop and the
|
||||
// associated Ascend* function will immediately return.
|
||||
type ItemIterator func(i Item) bool
|
||||
|
||||
// New creates a new B-Tree with the given degree.
|
||||
//
|
||||
// New(2), for example, will create a 2-3-4 tree (each node contains 1-3 items
|
||||
// and 2-4 children).
|
||||
func New(degree int) *BTree {
|
||||
return NewWithFreeList(degree, NewFreeList(DefaultFreeListSize))
|
||||
}
|
||||
|
||||
// NewWithFreeList creates a new B-Tree that uses the given node free list.
|
||||
func NewWithFreeList(degree int, f *FreeList) *BTree {
|
||||
if degree <= 1 {
|
||||
panic("bad degree")
|
||||
}
|
||||
return &BTree{
|
||||
degree: degree,
|
||||
cow: ©OnWriteContext{freelist: f},
|
||||
}
|
||||
}
|
||||
|
||||
// items stores items in a node.
|
||||
type items []Item
|
||||
|
||||
// insertAt inserts a value into the given index, pushing all subsequent values
|
||||
// forward.
|
||||
func (s *items) insertAt(index int, item Item) {
|
||||
*s = append(*s, nil)
|
||||
if index < len(*s) {
|
||||
copy((*s)[index+1:], (*s)[index:])
|
||||
}
|
||||
(*s)[index] = item
|
||||
}
|
||||
|
||||
// removeAt removes a value at a given index, pulling all subsequent values
|
||||
// back.
|
||||
func (s *items) removeAt(index int) Item {
|
||||
item := (*s)[index]
|
||||
copy((*s)[index:], (*s)[index+1:])
|
||||
(*s)[len(*s)-1] = nil
|
||||
*s = (*s)[:len(*s)-1]
|
||||
return item
|
||||
}
|
||||
|
||||
// pop removes and returns the last element in the list.
|
||||
func (s *items) pop() (out Item) {
|
||||
index := len(*s) - 1
|
||||
out = (*s)[index]
|
||||
(*s)[index] = nil
|
||||
*s = (*s)[:index]
|
||||
return
|
||||
}
|
||||
|
||||
// truncate truncates this instance at index so that it contains only the
|
||||
// first index items. index must be less than or equal to length.
|
||||
func (s *items) truncate(index int) {
|
||||
var toClear items
|
||||
*s, toClear = (*s)[:index], (*s)[index:]
|
||||
for len(toClear) > 0 {
|
||||
toClear = toClear[copy(toClear, nilItems):]
|
||||
}
|
||||
}
|
||||
|
||||
// find returns the index where the given item should be inserted into this
|
||||
// list. 'found' is true if the item already exists in the list at the given
|
||||
// index.
|
||||
func (s items) find(item Item) (index int, found bool) {
|
||||
i := sort.Search(len(s), func(i int) bool {
|
||||
return item.Less(s[i])
|
||||
})
|
||||
if i > 0 && !s[i-1].Less(item) {
|
||||
return i - 1, true
|
||||
}
|
||||
return i, false
|
||||
}
|
||||
|
||||
// children stores child nodes in a node.
|
||||
type children []*node
|
||||
|
||||
// insertAt inserts a value into the given index, pushing all subsequent values
|
||||
// forward.
|
||||
func (s *children) insertAt(index int, n *node) {
|
||||
*s = append(*s, nil)
|
||||
if index < len(*s) {
|
||||
copy((*s)[index+1:], (*s)[index:])
|
||||
}
|
||||
(*s)[index] = n
|
||||
}
|
||||
|
||||
// removeAt removes a value at a given index, pulling all subsequent values
|
||||
// back.
|
||||
func (s *children) removeAt(index int) *node {
|
||||
n := (*s)[index]
|
||||
copy((*s)[index:], (*s)[index+1:])
|
||||
(*s)[len(*s)-1] = nil
|
||||
*s = (*s)[:len(*s)-1]
|
||||
return n
|
||||
}
|
||||
|
||||
// pop removes and returns the last element in the list.
|
||||
func (s *children) pop() (out *node) {
|
||||
index := len(*s) - 1
|
||||
out = (*s)[index]
|
||||
(*s)[index] = nil
|
||||
*s = (*s)[:index]
|
||||
return
|
||||
}
|
||||
|
||||
// truncate truncates this instance at index so that it contains only the
|
||||
// first index children. index must be less than or equal to length.
|
||||
func (s *children) truncate(index int) {
|
||||
var toClear children
|
||||
*s, toClear = (*s)[:index], (*s)[index:]
|
||||
for len(toClear) > 0 {
|
||||
toClear = toClear[copy(toClear, nilChildren):]
|
||||
}
|
||||
}
|
||||
|
||||
// node is an internal node in a tree.
|
||||
//
|
||||
// It must at all times maintain the invariant that either
|
||||
// * len(children) == 0, len(items) unconstrained
|
||||
// * len(children) == len(items) + 1
|
||||
type node struct {
|
||||
items items
|
||||
children children
|
||||
cow *copyOnWriteContext
|
||||
}
|
||||
|
||||
func (n *node) mutableFor(cow *copyOnWriteContext) *node {
|
||||
if n.cow == cow {
|
||||
return n
|
||||
}
|
||||
out := cow.newNode()
|
||||
if cap(out.items) >= len(n.items) {
|
||||
out.items = out.items[:len(n.items)]
|
||||
} else {
|
||||
out.items = make(items, len(n.items), cap(n.items))
|
||||
}
|
||||
copy(out.items, n.items)
|
||||
// Copy children
|
||||
if cap(out.children) >= len(n.children) {
|
||||
out.children = out.children[:len(n.children)]
|
||||
} else {
|
||||
out.children = make(children, len(n.children), cap(n.children))
|
||||
}
|
||||
copy(out.children, n.children)
|
||||
return out
|
||||
}
|
||||
|
||||
func (n *node) mutableChild(i int) *node {
|
||||
c := n.children[i].mutableFor(n.cow)
|
||||
n.children[i] = c
|
||||
return c
|
||||
}
|
||||
|
||||
// split splits the given node at the given index. The current node shrinks,
|
||||
// and this function returns the item that existed at that index and a new node
|
||||
// containing all items/children after it.
|
||||
func (n *node) split(i int) (Item, *node) {
|
||||
item := n.items[i]
|
||||
next := n.cow.newNode()
|
||||
next.items = append(next.items, n.items[i+1:]...)
|
||||
n.items.truncate(i)
|
||||
if len(n.children) > 0 {
|
||||
next.children = append(next.children, n.children[i+1:]...)
|
||||
n.children.truncate(i + 1)
|
||||
}
|
||||
return item, next
|
||||
}
|
||||
|
||||
// maybeSplitChild checks if a child should be split, and if so splits it.
|
||||
// Returns whether or not a split occurred.
|
||||
func (n *node) maybeSplitChild(i, maxItems int) bool {
|
||||
if len(n.children[i].items) < maxItems {
|
||||
return false
|
||||
}
|
||||
first := n.mutableChild(i)
|
||||
item, second := first.split(maxItems / 2)
|
||||
n.items.insertAt(i, item)
|
||||
n.children.insertAt(i+1, second)
|
||||
return true
|
||||
}
|
||||
|
||||
// insert inserts an item into the subtree rooted at this node, making sure
|
||||
// no nodes in the subtree exceed maxItems items. Should an equivalent item be
|
||||
// be found/replaced by insert, it will be returned.
|
||||
func (n *node) insert(item Item, maxItems int) Item {
|
||||
i, found := n.items.find(item)
|
||||
if found {
|
||||
out := n.items[i]
|
||||
n.items[i] = item
|
||||
return out
|
||||
}
|
||||
if len(n.children) == 0 {
|
||||
n.items.insertAt(i, item)
|
||||
return nil
|
||||
}
|
||||
if n.maybeSplitChild(i, maxItems) {
|
||||
inTree := n.items[i]
|
||||
switch {
|
||||
case item.Less(inTree):
|
||||
// no change, we want first split node
|
||||
case inTree.Less(item):
|
||||
i++ // we want second split node
|
||||
default:
|
||||
out := n.items[i]
|
||||
n.items[i] = item
|
||||
return out
|
||||
}
|
||||
}
|
||||
return n.mutableChild(i).insert(item, maxItems)
|
||||
}
|
||||
|
||||
// get finds the given key in the subtree and returns it.
|
||||
func (n *node) get(key Item) Item {
|
||||
i, found := n.items.find(key)
|
||||
if found {
|
||||
return n.items[i]
|
||||
} else if len(n.children) > 0 {
|
||||
return n.children[i].get(key)
|
||||
}
|
||||
return nil
|
||||
}
|
||||
|
||||
// min returns the first item in the subtree.
|
||||
func min(n *node) Item {
|
||||
if n == nil {
|
||||
return nil
|
||||
}
|
||||
for len(n.children) > 0 {
|
||||
n = n.children[0]
|
||||
}
|
||||
if len(n.items) == 0 {
|
||||
return nil
|
||||
}
|
||||
return n.items[0]
|
||||
}
|
||||
|
||||
// max returns the last item in the subtree.
|
||||
func max(n *node) Item {
|
||||
if n == nil {
|
||||
return nil
|
||||
}
|
||||
for len(n.children) > 0 {
|
||||
n = n.children[len(n.children)-1]
|
||||
}
|
||||
if len(n.items) == 0 {
|
||||
return nil
|
||||
}
|
||||
return n.items[len(n.items)-1]
|
||||
}
|
||||
|
||||
// toRemove details what item to remove in a node.remove call.
|
||||
type toRemove int
|
||||
|
||||
const (
|
||||
removeItem toRemove = iota // removes the given item
|
||||
removeMin // removes smallest item in the subtree
|
||||
removeMax // removes largest item in the subtree
|
||||
)
|
||||
|
||||
// remove removes an item from the subtree rooted at this node.
|
||||
func (n *node) remove(item Item, minItems int, typ toRemove) Item {
|
||||
var i int
|
||||
var found bool
|
||||
switch typ {
|
||||
case removeMax:
|
||||
if len(n.children) == 0 {
|
||||
return n.items.pop()
|
||||
}
|
||||
i = len(n.items)
|
||||
case removeMin:
|
||||
if len(n.children) == 0 {
|
||||
return n.items.removeAt(0)
|
||||
}
|
||||
i = 0
|
||||
case removeItem:
|
||||
i, found = n.items.find(item)
|
||||
if len(n.children) == 0 {
|
||||
if found {
|
||||
return n.items.removeAt(i)
|
||||
}
|
||||
return nil
|
||||
}
|
||||
default:
|
||||
panic("invalid type")
|
||||
}
|
||||
// If we get to here, we have children.
|
||||
if len(n.children[i].items) <= minItems {
|
||||
return n.growChildAndRemove(i, item, minItems, typ)
|
||||
}
|
||||
child := n.mutableChild(i)
|
||||
// Either we had enough items to begin with, or we've done some
|
||||
// merging/stealing, because we've got enough now and we're ready to return
|
||||
// stuff.
|
||||
if found {
|
||||
// The item exists at index 'i', and the child we've selected can give us a
|
||||
// predecessor, since if we've gotten here it's got > minItems items in it.
|
||||
out := n.items[i]
|
||||
// We use our special-case 'remove' call with typ=maxItem to pull the
|
||||
// predecessor of item i (the rightmost leaf of our immediate left child)
|
||||
// and set it into where we pulled the item from.
|
||||
n.items[i] = child.remove(nil, minItems, removeMax)
|
||||
return out
|
||||
}
|
||||
// Final recursive call. Once we're here, we know that the item isn't in this
|
||||
// node and that the child is big enough to remove from.
|
||||
return child.remove(item, minItems, typ)
|
||||
}
|
||||
|
||||
// growChildAndRemove grows child 'i' to make sure it's possible to remove an
|
||||
// item from it while keeping it at minItems, then calls remove to actually
|
||||
// remove it.
|
||||
//
|
||||
// Most documentation says we have to do two sets of special casing:
|
||||
// 1) item is in this node
|
||||
// 2) item is in child
|
||||
// In both cases, we need to handle the two subcases:
|
||||
// A) node has enough values that it can spare one
|
||||
// B) node doesn't have enough values
|
||||
// For the latter, we have to check:
|
||||
// a) left sibling has node to spare
|
||||
// b) right sibling has node to spare
|
||||
// c) we must merge
|
||||
// To simplify our code here, we handle cases #1 and #2 the same:
|
||||
// If a node doesn't have enough items, we make sure it does (using a,b,c).
|
||||
// We then simply redo our remove call, and the second time (regardless of
|
||||
// whether we're in case 1 or 2), we'll have enough items and can guarantee
|
||||
// that we hit case A.
|
||||
func (n *node) growChildAndRemove(i int, item Item, minItems int, typ toRemove) Item {
|
||||
if i > 0 && len(n.children[i-1].items) > minItems {
|
||||
// Steal from left child
|
||||
child := n.mutableChild(i)
|
||||
stealFrom := n.mutableChild(i - 1)
|
||||
stolenItem := stealFrom.items.pop()
|
||||
child.items.insertAt(0, n.items[i-1])
|
||||
n.items[i-1] = stolenItem
|
||||
if len(stealFrom.children) > 0 {
|
||||
child.children.insertAt(0, stealFrom.children.pop())
|
||||
}
|
||||
} else if i < len(n.items) && len(n.children[i+1].items) > minItems {
|
||||
// steal from right child
|
||||
child := n.mutableChild(i)
|
||||
stealFrom := n.mutableChild(i + 1)
|
||||
stolenItem := stealFrom.items.removeAt(0)
|
||||
child.items = append(child.items, n.items[i])
|
||||
n.items[i] = stolenItem
|
||||
if len(stealFrom.children) > 0 {
|
||||
child.children = append(child.children, stealFrom.children.removeAt(0))
|
||||
}
|
||||
} else {
|
||||
if i >= len(n.items) {
|
||||
i--
|
||||
}
|
||||
child := n.mutableChild(i)
|
||||
// merge with right child
|
||||
mergeItem := n.items.removeAt(i)
|
||||
mergeChild := n.children.removeAt(i + 1)
|
||||
child.items = append(child.items, mergeItem)
|
||||
child.items = append(child.items, mergeChild.items...)
|
||||
child.children = append(child.children, mergeChild.children...)
|
||||
n.cow.freeNode(mergeChild)
|
||||
}
|
||||
return n.remove(item, minItems, typ)
|
||||
}
|
||||
|
||||
type direction int
|
||||
|
||||
const (
|
||||
descend = direction(-1)
|
||||
ascend = direction(+1)
|
||||
)
|
||||
|
||||
// iterate provides a simple method for iterating over elements in the tree.
|
||||
//
|
||||
// When ascending, the 'start' should be less than 'stop' and when descending,
|
||||
// the 'start' should be greater than 'stop'. Setting 'includeStart' to true
|
||||
// will force the iterator to include the first item when it equals 'start',
|
||||
// thus creating a "greaterOrEqual" or "lessThanEqual" rather than just a
|
||||
// "greaterThan" or "lessThan" queries.
|
||||
func (n *node) iterate(dir direction, start, stop Item, includeStart bool, hit bool, iter ItemIterator) (bool, bool) {
|
||||
var ok, found bool
|
||||
var index int
|
||||
switch dir {
|
||||
case ascend:
|
||||
if start != nil {
|
||||
index, _ = n.items.find(start)
|
||||
}
|
||||
for i := index; i < len(n.items); i++ {
|
||||
if len(n.children) > 0 {
|
||||
if hit, ok = n.children[i].iterate(dir, start, stop, includeStart, hit, iter); !ok {
|
||||
return hit, false
|
||||
}
|
||||
}
|
||||
if !includeStart && !hit && start != nil && !start.Less(n.items[i]) {
|
||||
hit = true
|
||||
continue
|
||||
}
|
||||
hit = true
|
||||
if stop != nil && !n.items[i].Less(stop) {
|
||||
return hit, false
|
||||
}
|
||||
if !iter(n.items[i]) {
|
||||
return hit, false
|
||||
}
|
||||
}
|
||||
if len(n.children) > 0 {
|
||||
if hit, ok = n.children[len(n.children)-1].iterate(dir, start, stop, includeStart, hit, iter); !ok {
|
||||
return hit, false
|
||||
}
|
||||
}
|
||||
case descend:
|
||||
if start != nil {
|
||||
index, found = n.items.find(start)
|
||||
if !found {
|
||||
index = index - 1
|
||||
}
|
||||
} else {
|
||||
index = len(n.items) - 1
|
||||
}
|
||||
for i := index; i >= 0; i-- {
|
||||
if start != nil && !n.items[i].Less(start) {
|
||||
if !includeStart || hit || start.Less(n.items[i]) {
|
||||
continue
|
||||
}
|
||||
}
|
||||
if len(n.children) > 0 {
|
||||
if hit, ok = n.children[i+1].iterate(dir, start, stop, includeStart, hit, iter); !ok {
|
||||
return hit, false
|
||||
}
|
||||
}
|
||||
if stop != nil && !stop.Less(n.items[i]) {
|
||||
return hit, false // continue
|
||||
}
|
||||
hit = true
|
||||
if !iter(n.items[i]) {
|
||||
return hit, false
|
||||
}
|
||||
}
|
||||
if len(n.children) > 0 {
|
||||
if hit, ok = n.children[0].iterate(dir, start, stop, includeStart, hit, iter); !ok {
|
||||
return hit, false
|
||||
}
|
||||
}
|
||||
}
|
||||
return hit, true
|
||||
}
|
||||
|
||||
// Used for testing/debugging purposes.
|
||||
func (n *node) print(w io.Writer, level int) {
|
||||
fmt.Fprintf(w, "%sNODE:%v\n", strings.Repeat(" ", level), n.items)
|
||||
for _, c := range n.children {
|
||||
c.print(w, level+1)
|
||||
}
|
||||
}
|
||||
|
||||
// BTree is an implementation of a B-Tree.
|
||||
//
|
||||
// BTree stores Item instances in an ordered structure, allowing easy insertion,
|
||||
// removal, and iteration.
|
||||
//
|
||||
// Write operations are not safe for concurrent mutation by multiple
|
||||
// goroutines, but Read operations are.
|
||||
type BTree struct {
|
||||
degree int
|
||||
length int
|
||||
root *node
|
||||
cow *copyOnWriteContext
|
||||
}
|
||||
|
||||
// copyOnWriteContext pointers determine node ownership... a tree with a write
|
||||
// context equivalent to a node's write context is allowed to modify that node.
|
||||
// A tree whose write context does not match a node's is not allowed to modify
|
||||
// it, and must create a new, writable copy (IE: it's a Clone).
|
||||
//
|
||||
// When doing any write operation, we maintain the invariant that the current
|
||||
// node's context is equal to the context of the tree that requested the write.
|
||||
// We do this by, before we descend into any node, creating a copy with the
|
||||
// correct context if the contexts don't match.
|
||||
//
|
||||
// Since the node we're currently visiting on any write has the requesting
|
||||
// tree's context, that node is modifiable in place. Children of that node may
|
||||
// not share context, but before we descend into them, we'll make a mutable
|
||||
// copy.
|
||||
type copyOnWriteContext struct {
|
||||
freelist *FreeList
|
||||
}
|
||||
|
||||
// Clone clones the btree, lazily. Clone should not be called concurrently,
|
||||
// but the original tree (t) and the new tree (t2) can be used concurrently
|
||||
// once the Clone call completes.
|
||||
//
|
||||
// The internal tree structure of b is marked read-only and shared between t and
|
||||
// t2. Writes to both t and t2 use copy-on-write logic, creating new nodes
|
||||
// whenever one of b's original nodes would have been modified. Read operations
|
||||
// should have no performance degredation. Write operations for both t and t2
|
||||
// will initially experience minor slow-downs caused by additional allocs and
|
||||
// copies due to the aforementioned copy-on-write logic, but should converge to
|
||||
// the original performance characteristics of the original tree.
|
||||
func (t *BTree) Clone() (t2 *BTree) {
|
||||
// Create two entirely new copy-on-write contexts.
|
||||
// This operation effectively creates three trees:
|
||||
// the original, shared nodes (old b.cow)
|
||||
// the new b.cow nodes
|
||||
// the new out.cow nodes
|
||||
cow1, cow2 := *t.cow, *t.cow
|
||||
out := *t
|
||||
t.cow = &cow1
|
||||
out.cow = &cow2
|
||||
return &out
|
||||
}
|
||||
|
||||
// maxItems returns the max number of items to allow per node.
|
||||
func (t *BTree) maxItems() int {
|
||||
return t.degree*2 - 1
|
||||
}
|
||||
|
||||
// minItems returns the min number of items to allow per node (ignored for the
|
||||
// root node).
|
||||
func (t *BTree) minItems() int {
|
||||
return t.degree - 1
|
||||
}
|
||||
|
||||
func (c *copyOnWriteContext) newNode() (n *node) {
|
||||
n = c.freelist.newNode()
|
||||
n.cow = c
|
||||
return
|
||||
}
|
||||
|
||||
type freeType int
|
||||
|
||||
const (
|
||||
ftFreelistFull freeType = iota // node was freed (available for GC, not stored in freelist)
|
||||
ftStored // node was stored in the freelist for later use
|
||||
ftNotOwned // node was ignored by COW, since it's owned by another one
|
||||
)
|
||||
|
||||
// freeNode frees a node within a given COW context, if it's owned by that
|
||||
// context. It returns what happened to the node (see freeType const
|
||||
// documentation).
|
||||
func (c *copyOnWriteContext) freeNode(n *node) freeType {
|
||||
if n.cow == c {
|
||||
// clear to allow GC
|
||||
n.items.truncate(0)
|
||||
n.children.truncate(0)
|
||||
n.cow = nil
|
||||
if c.freelist.freeNode(n) {
|
||||
return ftStored
|
||||
} else {
|
||||
return ftFreelistFull
|
||||
}
|
||||
} else {
|
||||
return ftNotOwned
|
||||
}
|
||||
}
|
||||
|
||||
// ReplaceOrInsert adds the given item to the tree. If an item in the tree
|
||||
// already equals the given one, it is removed from the tree and returned.
|
||||
// Otherwise, nil is returned.
|
||||
//
|
||||
// nil cannot be added to the tree (will panic).
|
||||
func (t *BTree) ReplaceOrInsert(item Item) Item {
|
||||
if item == nil {
|
||||
panic("nil item being added to BTree")
|
||||
}
|
||||
if t.root == nil {
|
||||
t.root = t.cow.newNode()
|
||||
t.root.items = append(t.root.items, item)
|
||||
t.length++
|
||||
return nil
|
||||
} else {
|
||||
t.root = t.root.mutableFor(t.cow)
|
||||
if len(t.root.items) >= t.maxItems() {
|
||||
item2, second := t.root.split(t.maxItems() / 2)
|
||||
oldroot := t.root
|
||||
t.root = t.cow.newNode()
|
||||
t.root.items = append(t.root.items, item2)
|
||||
t.root.children = append(t.root.children, oldroot, second)
|
||||
}
|
||||
}
|
||||
out := t.root.insert(item, t.maxItems())
|
||||
if out == nil {
|
||||
t.length++
|
||||
}
|
||||
return out
|
||||
}
|
||||
|
||||
// Delete removes an item equal to the passed in item from the tree, returning
|
||||
// it. If no such item exists, returns nil.
|
||||
func (t *BTree) Delete(item Item) Item {
|
||||
return t.deleteItem(item, removeItem)
|
||||
}
|
||||
|
||||
// DeleteMin removes the smallest item in the tree and returns it.
|
||||
// If no such item exists, returns nil.
|
||||
func (t *BTree) DeleteMin() Item {
|
||||
return t.deleteItem(nil, removeMin)
|
||||
}
|
||||
|
||||
// DeleteMax removes the largest item in the tree and returns it.
|
||||
// If no such item exists, returns nil.
|
||||
func (t *BTree) DeleteMax() Item {
|
||||
return t.deleteItem(nil, removeMax)
|
||||
}
|
||||
|
||||
func (t *BTree) deleteItem(item Item, typ toRemove) Item {
|
||||
if t.root == nil || len(t.root.items) == 0 {
|
||||
return nil
|
||||
}
|
||||
t.root = t.root.mutableFor(t.cow)
|
||||
out := t.root.remove(item, t.minItems(), typ)
|
||||
if len(t.root.items) == 0 && len(t.root.children) > 0 {
|
||||
oldroot := t.root
|
||||
t.root = t.root.children[0]
|
||||
t.cow.freeNode(oldroot)
|
||||
}
|
||||
if out != nil {
|
||||
t.length--
|
||||
}
|
||||
return out
|
||||
}
|
||||
|
||||
// AscendRange calls the iterator for every value in the tree within the range
|
||||
// [greaterOrEqual, lessThan), until iterator returns false.
|
||||
func (t *BTree) AscendRange(greaterOrEqual, lessThan Item, iterator ItemIterator) {
|
||||
if t.root == nil {
|
||||
return
|
||||
}
|
||||
t.root.iterate(ascend, greaterOrEqual, lessThan, true, false, iterator)
|
||||
}
|
||||
|
||||
// AscendLessThan calls the iterator for every value in the tree within the range
|
||||
// [first, pivot), until iterator returns false.
|
||||
func (t *BTree) AscendLessThan(pivot Item, iterator ItemIterator) {
|
||||
if t.root == nil {
|
||||
return
|
||||
}
|
||||
t.root.iterate(ascend, nil, pivot, false, false, iterator)
|
||||
}
|
||||
|
||||
// AscendGreaterOrEqual calls the iterator for every value in the tree within
|
||||
// the range [pivot, last], until iterator returns false.
|
||||
func (t *BTree) AscendGreaterOrEqual(pivot Item, iterator ItemIterator) {
|
||||
if t.root == nil {
|
||||
return
|
||||
}
|
||||
t.root.iterate(ascend, pivot, nil, true, false, iterator)
|
||||
}
|
||||
|
||||
// Ascend calls the iterator for every value in the tree within the range
|
||||
// [first, last], until iterator returns false.
|
||||
func (t *BTree) Ascend(iterator ItemIterator) {
|
||||
if t.root == nil {
|
||||
return
|
||||
}
|
||||
t.root.iterate(ascend, nil, nil, false, false, iterator)
|
||||
}
|
||||
|
||||
// DescendRange calls the iterator for every value in the tree within the range
|
||||
// [lessOrEqual, greaterThan), until iterator returns false.
|
||||
func (t *BTree) DescendRange(lessOrEqual, greaterThan Item, iterator ItemIterator) {
|
||||
if t.root == nil {
|
||||
return
|
||||
}
|
||||
t.root.iterate(descend, lessOrEqual, greaterThan, true, false, iterator)
|
||||
}
|
||||
|
||||
// DescendLessOrEqual calls the iterator for every value in the tree within the range
|
||||
// [pivot, first], until iterator returns false.
|
||||
func (t *BTree) DescendLessOrEqual(pivot Item, iterator ItemIterator) {
|
||||
if t.root == nil {
|
||||
return
|
||||
}
|
||||
t.root.iterate(descend, pivot, nil, true, false, iterator)
|
||||
}
|
||||
|
||||
// DescendGreaterThan calls the iterator for every value in the tree within
|
||||
// the range (pivot, last], until iterator returns false.
|
||||
func (t *BTree) DescendGreaterThan(pivot Item, iterator ItemIterator) {
|
||||
if t.root == nil {
|
||||
return
|
||||
}
|
||||
t.root.iterate(descend, nil, pivot, false, false, iterator)
|
||||
}
|
||||
|
||||
// Descend calls the iterator for every value in the tree within the range
|
||||
// [last, first], until iterator returns false.
|
||||
func (t *BTree) Descend(iterator ItemIterator) {
|
||||
if t.root == nil {
|
||||
return
|
||||
}
|
||||
t.root.iterate(descend, nil, nil, false, false, iterator)
|
||||
}
|
||||
|
||||
// Get looks for the key item in the tree, returning it. It returns nil if
|
||||
// unable to find that item.
|
||||
func (t *BTree) Get(key Item) Item {
|
||||
if t.root == nil {
|
||||
return nil
|
||||
}
|
||||
return t.root.get(key)
|
||||
}
|
||||
|
||||
// Min returns the smallest item in the tree, or nil if the tree is empty.
|
||||
func (t *BTree) Min() Item {
|
||||
return min(t.root)
|
||||
}
|
||||
|
||||
// Max returns the largest item in the tree, or nil if the tree is empty.
|
||||
func (t *BTree) Max() Item {
|
||||
return max(t.root)
|
||||
}
|
||||
|
||||
// Has returns true if the given key is in the tree.
|
||||
func (t *BTree) Has(key Item) bool {
|
||||
return t.Get(key) != nil
|
||||
}
|
||||
|
||||
// Len returns the number of items currently in the tree.
|
||||
func (t *BTree) Len() int {
|
||||
return t.length
|
||||
}
|
||||
|
||||
// Clear removes all items from the btree. If addNodesToFreelist is true,
|
||||
// t's nodes are added to its freelist as part of this call, until the freelist
|
||||
// is full. Otherwise, the root node is simply dereferenced and the subtree
|
||||
// left to Go's normal GC processes.
|
||||
//
|
||||
// This can be much faster
|
||||
// than calling Delete on all elements, because that requires finding/removing
|
||||
// each element in the tree and updating the tree accordingly. It also is
|
||||
// somewhat faster than creating a new tree to replace the old one, because
|
||||
// nodes from the old tree are reclaimed into the freelist for use by the new
|
||||
// one, instead of being lost to the garbage collector.
|
||||
//
|
||||
// This call takes:
|
||||
// O(1): when addNodesToFreelist is false, this is a single operation.
|
||||
// O(1): when the freelist is already full, it breaks out immediately
|
||||
// O(freelist size): when the freelist is empty and the nodes are all owned
|
||||
// by this tree, nodes are added to the freelist until full.
|
||||
// O(tree size): when all nodes are owned by another tree, all nodes are
|
||||
// iterated over looking for nodes to add to the freelist, and due to
|
||||
// ownership, none are.
|
||||
func (t *BTree) Clear(addNodesToFreelist bool) {
|
||||
if t.root != nil && addNodesToFreelist {
|
||||
t.root.reset(t.cow)
|
||||
}
|
||||
t.root, t.length = nil, 0
|
||||
}
|
||||
|
||||
// reset returns a subtree to the freelist. It breaks out immediately if the
|
||||
// freelist is full, since the only benefit of iterating is to fill that
|
||||
// freelist up. Returns true if parent reset call should continue.
|
||||
func (n *node) reset(c *copyOnWriteContext) bool {
|
||||
for _, child := range n.children {
|
||||
if !child.reset(c) {
|
||||
return false
|
||||
}
|
||||
}
|
||||
return c.freeNode(n) != ftFreelistFull
|
||||
}
|
||||
|
||||
// Int implements the Item interface for integers.
|
||||
type Int int
|
||||
|
||||
// Less returns true if int(a) < int(b).
|
||||
func (a Int) Less(b Item) bool {
|
||||
return a < b.(Int)
|
||||
}
|
19
vendor/github.com/peterbourgon/diskv/LICENSE
generated
vendored
Normal file
19
vendor/github.com/peterbourgon/diskv/LICENSE
generated
vendored
Normal file
@@ -0,0 +1,19 @@
|
||||
Copyright (c) 2011-2012 Peter Bourgon
|
||||
|
||||
Permission is hereby granted, free of charge, to any person obtaining a copy
|
||||
of this software and associated documentation files (the "Software"), to deal
|
||||
in the Software without restriction, including without limitation the rights
|
||||
to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
|
||||
copies of the Software, and to permit persons to whom the Software is
|
||||
furnished to do so, subject to the following conditions:
|
||||
|
||||
The above copyright notice and this permission notice shall be included in
|
||||
all copies or substantial portions of the Software.
|
||||
|
||||
THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
|
||||
IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
|
||||
FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
|
||||
AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
|
||||
LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
|
||||
OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
|
||||
THE SOFTWARE.
|
141
vendor/github.com/peterbourgon/diskv/README.md
generated
vendored
Normal file
141
vendor/github.com/peterbourgon/diskv/README.md
generated
vendored
Normal file
@@ -0,0 +1,141 @@
|
||||
# What is diskv?
|
||||
|
||||
Diskv (disk-vee) is a simple, persistent key-value store written in the Go
|
||||
language. It starts with an incredibly simple API for storing arbitrary data on
|
||||
a filesystem by key, and builds several layers of performance-enhancing
|
||||
abstraction on top. The end result is a conceptually simple, but highly
|
||||
performant, disk-backed storage system.
|
||||
|
||||
[![Build Status][1]][2]
|
||||
|
||||
[1]: https://drone.io/github.com/peterbourgon/diskv/status.png
|
||||
[2]: https://drone.io/github.com/peterbourgon/diskv/latest
|
||||
|
||||
|
||||
# Installing
|
||||
|
||||
Install [Go 1][3], either [from source][4] or [with a prepackaged binary][5].
|
||||
Then,
|
||||
|
||||
```bash
|
||||
$ go get github.com/peterbourgon/diskv
|
||||
```
|
||||
|
||||
[3]: http://golang.org
|
||||
[4]: http://golang.org/doc/install/source
|
||||
[5]: http://golang.org/doc/install
|
||||
|
||||
|
||||
# Usage
|
||||
|
||||
```go
|
||||
package main
|
||||
|
||||
import (
|
||||
"fmt"
|
||||
"github.com/peterbourgon/diskv"
|
||||
)
|
||||
|
||||
func main() {
|
||||
// Simplest transform function: put all the data files into the base dir.
|
||||
flatTransform := func(s string) []string { return []string{} }
|
||||
|
||||
// Initialize a new diskv store, rooted at "my-data-dir", with a 1MB cache.
|
||||
d := diskv.New(diskv.Options{
|
||||
BasePath: "my-data-dir",
|
||||
Transform: flatTransform,
|
||||
CacheSizeMax: 1024 * 1024,
|
||||
})
|
||||
|
||||
// Write three bytes to the key "alpha".
|
||||
key := "alpha"
|
||||
d.Write(key, []byte{'1', '2', '3'})
|
||||
|
||||
// Read the value back out of the store.
|
||||
value, _ := d.Read(key)
|
||||
fmt.Printf("%v\n", value)
|
||||
|
||||
// Erase the key+value from the store (and the disk).
|
||||
d.Erase(key)
|
||||
}
|
||||
```
|
||||
|
||||
More complex examples can be found in the "examples" subdirectory.
|
||||
|
||||
|
||||
# Theory
|
||||
|
||||
## Basic idea
|
||||
|
||||
At its core, diskv is a map of a key (`string`) to arbitrary data (`[]byte`).
|
||||
The data is written to a single file on disk, with the same name as the key.
|
||||
The key determines where that file will be stored, via a user-provided
|
||||
`TransformFunc`, which takes a key and returns a slice (`[]string`)
|
||||
corresponding to a path list where the key file will be stored. The simplest
|
||||
TransformFunc,
|
||||
|
||||
```go
|
||||
func SimpleTransform (key string) []string {
|
||||
return []string{}
|
||||
}
|
||||
```
|
||||
|
||||
will place all keys in the same, base directory. The design is inspired by
|
||||
[Redis diskstore][6]; a TransformFunc which emulates the default diskstore
|
||||
behavior is available in the content-addressable-storage example.
|
||||
|
||||
[6]: http://groups.google.com/group/redis-db/browse_thread/thread/d444bc786689bde9?pli=1
|
||||
|
||||
**Note** that your TransformFunc should ensure that one valid key doesn't
|
||||
transform to a subset of another valid key. That is, it shouldn't be possible
|
||||
to construct valid keys that resolve to directory names. As a concrete example,
|
||||
if your TransformFunc splits on every 3 characters, then
|
||||
|
||||
```go
|
||||
d.Write("abcabc", val) // OK: written to <base>/abc/abc/abcabc
|
||||
d.Write("abc", val) // Error: attempted write to <base>/abc/abc, but it's a directory
|
||||
```
|
||||
|
||||
This will be addressed in an upcoming version of diskv.
|
||||
|
||||
Probably the most important design principle behind diskv is that your data is
|
||||
always flatly available on the disk. diskv will never do anything that would
|
||||
prevent you from accessing, copying, backing up, or otherwise interacting with
|
||||
your data via common UNIX commandline tools.
|
||||
|
||||
## Adding a cache
|
||||
|
||||
An in-memory caching layer is provided by combining the BasicStore
|
||||
functionality with a simple map structure, and keeping it up-to-date as
|
||||
appropriate. Since the map structure in Go is not threadsafe, it's combined
|
||||
with a RWMutex to provide safe concurrent access.
|
||||
|
||||
## Adding order
|
||||
|
||||
diskv is a key-value store and therefore inherently unordered. An ordering
|
||||
system can be injected into the store by passing something which satisfies the
|
||||
diskv.Index interface. (A default implementation, using Google's
|
||||
[btree][7] package, is provided.) Basically, diskv keeps an ordered (by a
|
||||
user-provided Less function) index of the keys, which can be queried.
|
||||
|
||||
[7]: https://github.com/google/btree
|
||||
|
||||
## Adding compression
|
||||
|
||||
Something which implements the diskv.Compression interface may be passed
|
||||
during store creation, so that all Writes and Reads are filtered through
|
||||
a compression/decompression pipeline. Several default implementations,
|
||||
using stdlib compression algorithms, are provided. Note that data is cached
|
||||
compressed; the cost of decompression is borne with each Read.
|
||||
|
||||
## Streaming
|
||||
|
||||
diskv also now provides ReadStream and WriteStream methods, to allow very large
|
||||
data to be handled efficiently.
|
||||
|
||||
|
||||
# Future plans
|
||||
|
||||
* Needs plenty of robust testing: huge datasets, etc...
|
||||
* More thorough benchmarking
|
||||
* Your suggestions for use-cases I haven't thought of
|
64
vendor/github.com/peterbourgon/diskv/compression.go
generated
vendored
Normal file
64
vendor/github.com/peterbourgon/diskv/compression.go
generated
vendored
Normal file
@@ -0,0 +1,64 @@
|
||||
package diskv
|
||||
|
||||
import (
|
||||
"compress/flate"
|
||||
"compress/gzip"
|
||||
"compress/zlib"
|
||||
"io"
|
||||
)
|
||||
|
||||
// Compression is an interface that Diskv uses to implement compression of
|
||||
// data. Writer takes a destination io.Writer and returns a WriteCloser that
|
||||
// compresses all data written through it. Reader takes a source io.Reader and
|
||||
// returns a ReadCloser that decompresses all data read through it. You may
|
||||
// define these methods on your own type, or use one of the NewCompression
|
||||
// helpers.
|
||||
type Compression interface {
|
||||
Writer(dst io.Writer) (io.WriteCloser, error)
|
||||
Reader(src io.Reader) (io.ReadCloser, error)
|
||||
}
|
||||
|
||||
// NewGzipCompression returns a Gzip-based Compression.
|
||||
func NewGzipCompression() Compression {
|
||||
return NewGzipCompressionLevel(flate.DefaultCompression)
|
||||
}
|
||||
|
||||
// NewGzipCompressionLevel returns a Gzip-based Compression with the given level.
|
||||
func NewGzipCompressionLevel(level int) Compression {
|
||||
return &genericCompression{
|
||||
wf: func(w io.Writer) (io.WriteCloser, error) { return gzip.NewWriterLevel(w, level) },
|
||||
rf: func(r io.Reader) (io.ReadCloser, error) { return gzip.NewReader(r) },
|
||||
}
|
||||
}
|
||||
|
||||
// NewZlibCompression returns a Zlib-based Compression.
|
||||
func NewZlibCompression() Compression {
|
||||
return NewZlibCompressionLevel(flate.DefaultCompression)
|
||||
}
|
||||
|
||||
// NewZlibCompressionLevel returns a Zlib-based Compression with the given level.
|
||||
func NewZlibCompressionLevel(level int) Compression {
|
||||
return NewZlibCompressionLevelDict(level, nil)
|
||||
}
|
||||
|
||||
// NewZlibCompressionLevelDict returns a Zlib-based Compression with the given
|
||||
// level, based on the given dictionary.
|
||||
func NewZlibCompressionLevelDict(level int, dict []byte) Compression {
|
||||
return &genericCompression{
|
||||
func(w io.Writer) (io.WriteCloser, error) { return zlib.NewWriterLevelDict(w, level, dict) },
|
||||
func(r io.Reader) (io.ReadCloser, error) { return zlib.NewReaderDict(r, dict) },
|
||||
}
|
||||
}
|
||||
|
||||
type genericCompression struct {
|
||||
wf func(w io.Writer) (io.WriteCloser, error)
|
||||
rf func(r io.Reader) (io.ReadCloser, error)
|
||||
}
|
||||
|
||||
func (g *genericCompression) Writer(dst io.Writer) (io.WriteCloser, error) {
|
||||
return g.wf(dst)
|
||||
}
|
||||
|
||||
func (g *genericCompression) Reader(src io.Reader) (io.ReadCloser, error) {
|
||||
return g.rf(src)
|
||||
}
|
624
vendor/github.com/peterbourgon/diskv/diskv.go
generated
vendored
Normal file
624
vendor/github.com/peterbourgon/diskv/diskv.go
generated
vendored
Normal file
@@ -0,0 +1,624 @@
|
||||
// Diskv (disk-vee) is a simple, persistent, key-value store.
|
||||
// It stores all data flatly on the filesystem.
|
||||
|
||||
package diskv
|
||||
|
||||
import (
|
||||
"bytes"
|
||||
"errors"
|
||||
"fmt"
|
||||
"io"
|
||||
"io/ioutil"
|
||||
"os"
|
||||
"path/filepath"
|
||||
"strings"
|
||||
"sync"
|
||||
"syscall"
|
||||
)
|
||||
|
||||
const (
|
||||
defaultBasePath = "diskv"
|
||||
defaultFilePerm os.FileMode = 0666
|
||||
defaultPathPerm os.FileMode = 0777
|
||||
)
|
||||
|
||||
var (
|
||||
defaultTransform = func(s string) []string { return []string{} }
|
||||
errCanceled = errors.New("canceled")
|
||||
errEmptyKey = errors.New("empty key")
|
||||
errBadKey = errors.New("bad key")
|
||||
errImportDirectory = errors.New("can't import a directory")
|
||||
)
|
||||
|
||||
// TransformFunction transforms a key into a slice of strings, with each
|
||||
// element in the slice representing a directory in the file path where the
|
||||
// key's entry will eventually be stored.
|
||||
//
|
||||
// For example, if TransformFunc transforms "abcdef" to ["ab", "cde", "f"],
|
||||
// the final location of the data file will be <basedir>/ab/cde/f/abcdef
|
||||
type TransformFunction func(s string) []string
|
||||
|
||||
// Options define a set of properties that dictate Diskv behavior.
|
||||
// All values are optional.
|
||||
type Options struct {
|
||||
BasePath string
|
||||
Transform TransformFunction
|
||||
CacheSizeMax uint64 // bytes
|
||||
PathPerm os.FileMode
|
||||
FilePerm os.FileMode
|
||||
// If TempDir is set, it will enable filesystem atomic writes by
|
||||
// writing temporary files to that location before being moved
|
||||
// to BasePath.
|
||||
// Note that TempDir MUST be on the same device/partition as
|
||||
// BasePath.
|
||||
TempDir string
|
||||
|
||||
Index Index
|
||||
IndexLess LessFunction
|
||||
|
||||
Compression Compression
|
||||
}
|
||||
|
||||
// Diskv implements the Diskv interface. You shouldn't construct Diskv
|
||||
// structures directly; instead, use the New constructor.
|
||||
type Diskv struct {
|
||||
Options
|
||||
mu sync.RWMutex
|
||||
cache map[string][]byte
|
||||
cacheSize uint64
|
||||
}
|
||||
|
||||
// New returns an initialized Diskv structure, ready to use.
|
||||
// If the path identified by baseDir already contains data,
|
||||
// it will be accessible, but not yet cached.
|
||||
func New(o Options) *Diskv {
|
||||
if o.BasePath == "" {
|
||||
o.BasePath = defaultBasePath
|
||||
}
|
||||
if o.Transform == nil {
|
||||
o.Transform = defaultTransform
|
||||
}
|
||||
if o.PathPerm == 0 {
|
||||
o.PathPerm = defaultPathPerm
|
||||
}
|
||||
if o.FilePerm == 0 {
|
||||
o.FilePerm = defaultFilePerm
|
||||
}
|
||||
|
||||
d := &Diskv{
|
||||
Options: o,
|
||||
cache: map[string][]byte{},
|
||||
cacheSize: 0,
|
||||
}
|
||||
|
||||
if d.Index != nil && d.IndexLess != nil {
|
||||
d.Index.Initialize(d.IndexLess, d.Keys(nil))
|
||||
}
|
||||
|
||||
return d
|
||||
}
|
||||
|
||||
// Write synchronously writes the key-value pair to disk, making it immediately
|
||||
// available for reads. Write relies on the filesystem to perform an eventual
|
||||
// sync to physical media. If you need stronger guarantees, see WriteStream.
|
||||
func (d *Diskv) Write(key string, val []byte) error {
|
||||
return d.WriteStream(key, bytes.NewBuffer(val), false)
|
||||
}
|
||||
|
||||
// WriteStream writes the data represented by the io.Reader to the disk, under
|
||||
// the provided key. If sync is true, WriteStream performs an explicit sync on
|
||||
// the file as soon as it's written.
|
||||
//
|
||||
// bytes.Buffer provides io.Reader semantics for basic data types.
|
||||
func (d *Diskv) WriteStream(key string, r io.Reader, sync bool) error {
|
||||
if len(key) <= 0 {
|
||||
return errEmptyKey
|
||||
}
|
||||
|
||||
d.mu.Lock()
|
||||
defer d.mu.Unlock()
|
||||
|
||||
return d.writeStreamWithLock(key, r, sync)
|
||||
}
|
||||
|
||||
// createKeyFileWithLock either creates the key file directly, or
|
||||
// creates a temporary file in TempDir if it is set.
|
||||
func (d *Diskv) createKeyFileWithLock(key string) (*os.File, error) {
|
||||
if d.TempDir != "" {
|
||||
if err := os.MkdirAll(d.TempDir, d.PathPerm); err != nil {
|
||||
return nil, fmt.Errorf("temp mkdir: %s", err)
|
||||
}
|
||||
f, err := ioutil.TempFile(d.TempDir, "")
|
||||
if err != nil {
|
||||
return nil, fmt.Errorf("temp file: %s", err)
|
||||
}
|
||||
|
||||
if err := f.Chmod(d.FilePerm); err != nil {
|
||||
f.Close() // error deliberately ignored
|
||||
os.Remove(f.Name()) // error deliberately ignored
|
||||
return nil, fmt.Errorf("chmod: %s", err)
|
||||
}
|
||||
return f, nil
|
||||
}
|
||||
|
||||
mode := os.O_WRONLY | os.O_CREATE | os.O_TRUNC // overwrite if exists
|
||||
f, err := os.OpenFile(d.completeFilename(key), mode, d.FilePerm)
|
||||
if err != nil {
|
||||
return nil, fmt.Errorf("open file: %s", err)
|
||||
}
|
||||
return f, nil
|
||||
}
|
||||
|
||||
// writeStream does no input validation checking.
|
||||
func (d *Diskv) writeStreamWithLock(key string, r io.Reader, sync bool) error {
|
||||
if err := d.ensurePathWithLock(key); err != nil {
|
||||
return fmt.Errorf("ensure path: %s", err)
|
||||
}
|
||||
|
||||
f, err := d.createKeyFileWithLock(key)
|
||||
if err != nil {
|
||||
return fmt.Errorf("create key file: %s", err)
|
||||
}
|
||||
|
||||
wc := io.WriteCloser(&nopWriteCloser{f})
|
||||
if d.Compression != nil {
|
||||
wc, err = d.Compression.Writer(f)
|
||||
if err != nil {
|
||||
f.Close() // error deliberately ignored
|
||||
os.Remove(f.Name()) // error deliberately ignored
|
||||
return fmt.Errorf("compression writer: %s", err)
|
||||
}
|
||||
}
|
||||
|
||||
if _, err := io.Copy(wc, r); err != nil {
|
||||
f.Close() // error deliberately ignored
|
||||
os.Remove(f.Name()) // error deliberately ignored
|
||||
return fmt.Errorf("i/o copy: %s", err)
|
||||
}
|
||||
|
||||
if err := wc.Close(); err != nil {
|
||||
f.Close() // error deliberately ignored
|
||||
os.Remove(f.Name()) // error deliberately ignored
|
||||
return fmt.Errorf("compression close: %s", err)
|
||||
}
|
||||
|
||||
if sync {
|
||||
if err := f.Sync(); err != nil {
|
||||
f.Close() // error deliberately ignored
|
||||
os.Remove(f.Name()) // error deliberately ignored
|
||||
return fmt.Errorf("file sync: %s", err)
|
||||
}
|
||||
}
|
||||
|
||||
if err := f.Close(); err != nil {
|
||||
return fmt.Errorf("file close: %s", err)
|
||||
}
|
||||
|
||||
if f.Name() != d.completeFilename(key) {
|
||||
if err := os.Rename(f.Name(), d.completeFilename(key)); err != nil {
|
||||
os.Remove(f.Name()) // error deliberately ignored
|
||||
return fmt.Errorf("rename: %s", err)
|
||||
}
|
||||
}
|
||||
|
||||
if d.Index != nil {
|
||||
d.Index.Insert(key)
|
||||
}
|
||||
|
||||
d.bustCacheWithLock(key) // cache only on read
|
||||
|
||||
return nil
|
||||
}
|
||||
|
||||
// Import imports the source file into diskv under the destination key. If the
|
||||
// destination key already exists, it's overwritten. If move is true, the
|
||||
// source file is removed after a successful import.
|
||||
func (d *Diskv) Import(srcFilename, dstKey string, move bool) (err error) {
|
||||
if dstKey == "" {
|
||||
return errEmptyKey
|
||||
}
|
||||
|
||||
if fi, err := os.Stat(srcFilename); err != nil {
|
||||
return err
|
||||
} else if fi.IsDir() {
|
||||
return errImportDirectory
|
||||
}
|
||||
|
||||
d.mu.Lock()
|
||||
defer d.mu.Unlock()
|
||||
|
||||
if err := d.ensurePathWithLock(dstKey); err != nil {
|
||||
return fmt.Errorf("ensure path: %s", err)
|
||||
}
|
||||
|
||||
if move {
|
||||
if err := syscall.Rename(srcFilename, d.completeFilename(dstKey)); err == nil {
|
||||
d.bustCacheWithLock(dstKey)
|
||||
return nil
|
||||
} else if err != syscall.EXDEV {
|
||||
// If it failed due to being on a different device, fall back to copying
|
||||
return err
|
||||
}
|
||||
}
|
||||
|
||||
f, err := os.Open(srcFilename)
|
||||
if err != nil {
|
||||
return err
|
||||
}
|
||||
defer f.Close()
|
||||
err = d.writeStreamWithLock(dstKey, f, false)
|
||||
if err == nil && move {
|
||||
err = os.Remove(srcFilename)
|
||||
}
|
||||
return err
|
||||
}
|
||||
|
||||
// Read reads the key and returns the value.
|
||||
// If the key is available in the cache, Read won't touch the disk.
|
||||
// If the key is not in the cache, Read will have the side-effect of
|
||||
// lazily caching the value.
|
||||
func (d *Diskv) Read(key string) ([]byte, error) {
|
||||
rc, err := d.ReadStream(key, false)
|
||||
if err != nil {
|
||||
return []byte{}, err
|
||||
}
|
||||
defer rc.Close()
|
||||
return ioutil.ReadAll(rc)
|
||||
}
|
||||
|
||||
// ReadStream reads the key and returns the value (data) as an io.ReadCloser.
|
||||
// If the value is cached from a previous read, and direct is false,
|
||||
// ReadStream will use the cached value. Otherwise, it will return a handle to
|
||||
// the file on disk, and cache the data on read.
|
||||
//
|
||||
// If direct is true, ReadStream will lazily delete any cached value for the
|
||||
// key, and return a direct handle to the file on disk.
|
||||
//
|
||||
// If compression is enabled, ReadStream taps into the io.Reader stream prior
|
||||
// to decompression, and caches the compressed data.
|
||||
func (d *Diskv) ReadStream(key string, direct bool) (io.ReadCloser, error) {
|
||||
d.mu.RLock()
|
||||
defer d.mu.RUnlock()
|
||||
|
||||
if val, ok := d.cache[key]; ok {
|
||||
if !direct {
|
||||
buf := bytes.NewBuffer(val)
|
||||
if d.Compression != nil {
|
||||
return d.Compression.Reader(buf)
|
||||
}
|
||||
return ioutil.NopCloser(buf), nil
|
||||
}
|
||||
|
||||
go func() {
|
||||
d.mu.Lock()
|
||||
defer d.mu.Unlock()
|
||||
d.uncacheWithLock(key, uint64(len(val)))
|
||||
}()
|
||||
}
|
||||
|
||||
return d.readWithRLock(key)
|
||||
}
|
||||
|
||||
// read ignores the cache, and returns an io.ReadCloser representing the
|
||||
// decompressed data for the given key, streamed from the disk. Clients should
|
||||
// acquire a read lock on the Diskv and check the cache themselves before
|
||||
// calling read.
|
||||
func (d *Diskv) readWithRLock(key string) (io.ReadCloser, error) {
|
||||
filename := d.completeFilename(key)
|
||||
|
||||
fi, err := os.Stat(filename)
|
||||
if err != nil {
|
||||
return nil, err
|
||||
}
|
||||
if fi.IsDir() {
|
||||
return nil, os.ErrNotExist
|
||||
}
|
||||
|
||||
f, err := os.Open(filename)
|
||||
if err != nil {
|
||||
return nil, err
|
||||
}
|
||||
|
||||
var r io.Reader
|
||||
if d.CacheSizeMax > 0 {
|
||||
r = newSiphon(f, d, key)
|
||||
} else {
|
||||
r = &closingReader{f}
|
||||
}
|
||||
|
||||
var rc = io.ReadCloser(ioutil.NopCloser(r))
|
||||
if d.Compression != nil {
|
||||
rc, err = d.Compression.Reader(r)
|
||||
if err != nil {
|
||||
return nil, err
|
||||
}
|
||||
}
|
||||
|
||||
return rc, nil
|
||||
}
|
||||
|
||||
// closingReader provides a Reader that automatically closes the
|
||||
// embedded ReadCloser when it reaches EOF
|
||||
type closingReader struct {
|
||||
rc io.ReadCloser
|
||||
}
|
||||
|
||||
func (cr closingReader) Read(p []byte) (int, error) {
|
||||
n, err := cr.rc.Read(p)
|
||||
if err == io.EOF {
|
||||
if closeErr := cr.rc.Close(); closeErr != nil {
|
||||
return n, closeErr // close must succeed for Read to succeed
|
||||
}
|
||||
}
|
||||
return n, err
|
||||
}
|
||||
|
||||
// siphon is like a TeeReader: it copies all data read through it to an
|
||||
// internal buffer, and moves that buffer to the cache at EOF.
|
||||
type siphon struct {
|
||||
f *os.File
|
||||
d *Diskv
|
||||
key string
|
||||
buf *bytes.Buffer
|
||||
}
|
||||
|
||||
// newSiphon constructs a siphoning reader that represents the passed file.
|
||||
// When a successful series of reads ends in an EOF, the siphon will write
|
||||
// the buffered data to Diskv's cache under the given key.
|
||||
func newSiphon(f *os.File, d *Diskv, key string) io.Reader {
|
||||
return &siphon{
|
||||
f: f,
|
||||
d: d,
|
||||
key: key,
|
||||
buf: &bytes.Buffer{},
|
||||
}
|
||||
}
|
||||
|
||||
// Read implements the io.Reader interface for siphon.
|
||||
func (s *siphon) Read(p []byte) (int, error) {
|
||||
n, err := s.f.Read(p)
|
||||
|
||||
if err == nil {
|
||||
return s.buf.Write(p[0:n]) // Write must succeed for Read to succeed
|
||||
}
|
||||
|
||||
if err == io.EOF {
|
||||
s.d.cacheWithoutLock(s.key, s.buf.Bytes()) // cache may fail
|
||||
if closeErr := s.f.Close(); closeErr != nil {
|
||||
return n, closeErr // close must succeed for Read to succeed
|
||||
}
|
||||
return n, err
|
||||
}
|
||||
|
||||
return n, err
|
||||
}
|
||||
|
||||
// Erase synchronously erases the given key from the disk and the cache.
|
||||
func (d *Diskv) Erase(key string) error {
|
||||
d.mu.Lock()
|
||||
defer d.mu.Unlock()
|
||||
|
||||
d.bustCacheWithLock(key)
|
||||
|
||||
// erase from index
|
||||
if d.Index != nil {
|
||||
d.Index.Delete(key)
|
||||
}
|
||||
|
||||
// erase from disk
|
||||
filename := d.completeFilename(key)
|
||||
if s, err := os.Stat(filename); err == nil {
|
||||
if s.IsDir() {
|
||||
return errBadKey
|
||||
}
|
||||
if err = os.Remove(filename); err != nil {
|
||||
return err
|
||||
}
|
||||
} else {
|
||||
// Return err as-is so caller can do os.IsNotExist(err).
|
||||
return err
|
||||
}
|
||||
|
||||
// clean up and return
|
||||
d.pruneDirsWithLock(key)
|
||||
return nil
|
||||
}
|
||||
|
||||
// EraseAll will delete all of the data from the store, both in the cache and on
|
||||
// the disk. Note that EraseAll doesn't distinguish diskv-related data from non-
|
||||
// diskv-related data. Care should be taken to always specify a diskv base
|
||||
// directory that is exclusively for diskv data.
|
||||
func (d *Diskv) EraseAll() error {
|
||||
d.mu.Lock()
|
||||
defer d.mu.Unlock()
|
||||
d.cache = make(map[string][]byte)
|
||||
d.cacheSize = 0
|
||||
if d.TempDir != "" {
|
||||
os.RemoveAll(d.TempDir) // errors ignored
|
||||
}
|
||||
return os.RemoveAll(d.BasePath)
|
||||
}
|
||||
|
||||
// Has returns true if the given key exists.
|
||||
func (d *Diskv) Has(key string) bool {
|
||||
d.mu.Lock()
|
||||
defer d.mu.Unlock()
|
||||
|
||||
if _, ok := d.cache[key]; ok {
|
||||
return true
|
||||
}
|
||||
|
||||
filename := d.completeFilename(key)
|
||||
s, err := os.Stat(filename)
|
||||
if err != nil {
|
||||
return false
|
||||
}
|
||||
if s.IsDir() {
|
||||
return false
|
||||
}
|
||||
|
||||
return true
|
||||
}
|
||||
|
||||
// Keys returns a channel that will yield every key accessible by the store,
|
||||
// in undefined order. If a cancel channel is provided, closing it will
|
||||
// terminate and close the keys channel.
|
||||
func (d *Diskv) Keys(cancel <-chan struct{}) <-chan string {
|
||||
return d.KeysPrefix("", cancel)
|
||||
}
|
||||
|
||||
// KeysPrefix returns a channel that will yield every key accessible by the
|
||||
// store with the given prefix, in undefined order. If a cancel channel is
|
||||
// provided, closing it will terminate and close the keys channel. If the
|
||||
// provided prefix is the empty string, all keys will be yielded.
|
||||
func (d *Diskv) KeysPrefix(prefix string, cancel <-chan struct{}) <-chan string {
|
||||
var prepath string
|
||||
if prefix == "" {
|
||||
prepath = d.BasePath
|
||||
} else {
|
||||
prepath = d.pathFor(prefix)
|
||||
}
|
||||
c := make(chan string)
|
||||
go func() {
|
||||
filepath.Walk(prepath, walker(c, prefix, cancel))
|
||||
close(c)
|
||||
}()
|
||||
return c
|
||||
}
|
||||
|
||||
// walker returns a function which satisfies the filepath.WalkFunc interface.
|
||||
// It sends every non-directory file entry down the channel c.
|
||||
func walker(c chan<- string, prefix string, cancel <-chan struct{}) filepath.WalkFunc {
|
||||
return func(path string, info os.FileInfo, err error) error {
|
||||
if err != nil {
|
||||
return err
|
||||
}
|
||||
|
||||
if info.IsDir() || !strings.HasPrefix(info.Name(), prefix) {
|
||||
return nil // "pass"
|
||||
}
|
||||
|
||||
select {
|
||||
case c <- info.Name():
|
||||
case <-cancel:
|
||||
return errCanceled
|
||||
}
|
||||
|
||||
return nil
|
||||
}
|
||||
}
|
||||
|
||||
// pathFor returns the absolute path for location on the filesystem where the
|
||||
// data for the given key will be stored.
|
||||
func (d *Diskv) pathFor(key string) string {
|
||||
return filepath.Join(d.BasePath, filepath.Join(d.Transform(key)...))
|
||||
}
|
||||
|
||||
// ensurePathWithLock is a helper function that generates all necessary
|
||||
// directories on the filesystem for the given key.
|
||||
func (d *Diskv) ensurePathWithLock(key string) error {
|
||||
return os.MkdirAll(d.pathFor(key), d.PathPerm)
|
||||
}
|
||||
|
||||
// completeFilename returns the absolute path to the file for the given key.
|
||||
func (d *Diskv) completeFilename(key string) string {
|
||||
return filepath.Join(d.pathFor(key), key)
|
||||
}
|
||||
|
||||
// cacheWithLock attempts to cache the given key-value pair in the store's
|
||||
// cache. It can fail if the value is larger than the cache's maximum size.
|
||||
func (d *Diskv) cacheWithLock(key string, val []byte) error {
|
||||
valueSize := uint64(len(val))
|
||||
if err := d.ensureCacheSpaceWithLock(valueSize); err != nil {
|
||||
return fmt.Errorf("%s; not caching", err)
|
||||
}
|
||||
|
||||
// be very strict about memory guarantees
|
||||
if (d.cacheSize + valueSize) > d.CacheSizeMax {
|
||||
panic(fmt.Sprintf("failed to make room for value (%d/%d)", valueSize, d.CacheSizeMax))
|
||||
}
|
||||
|
||||
d.cache[key] = val
|
||||
d.cacheSize += valueSize
|
||||
return nil
|
||||
}
|
||||
|
||||
// cacheWithoutLock acquires the store's (write) mutex and calls cacheWithLock.
|
||||
func (d *Diskv) cacheWithoutLock(key string, val []byte) error {
|
||||
d.mu.Lock()
|
||||
defer d.mu.Unlock()
|
||||
return d.cacheWithLock(key, val)
|
||||
}
|
||||
|
||||
func (d *Diskv) bustCacheWithLock(key string) {
|
||||
if val, ok := d.cache[key]; ok {
|
||||
d.uncacheWithLock(key, uint64(len(val)))
|
||||
}
|
||||
}
|
||||
|
||||
func (d *Diskv) uncacheWithLock(key string, sz uint64) {
|
||||
d.cacheSize -= sz
|
||||
delete(d.cache, key)
|
||||
}
|
||||
|
||||
// pruneDirsWithLock deletes empty directories in the path walk leading to the
|
||||
// key k. Typically this function is called after an Erase is made.
|
||||
func (d *Diskv) pruneDirsWithLock(key string) error {
|
||||
pathlist := d.Transform(key)
|
||||
for i := range pathlist {
|
||||
dir := filepath.Join(d.BasePath, filepath.Join(pathlist[:len(pathlist)-i]...))
|
||||
|
||||
// thanks to Steven Blenkinsop for this snippet
|
||||
switch fi, err := os.Stat(dir); true {
|
||||
case err != nil:
|
||||
return err
|
||||
case !fi.IsDir():
|
||||
panic(fmt.Sprintf("corrupt dirstate at %s", dir))
|
||||
}
|
||||
|
||||
nlinks, err := filepath.Glob(filepath.Join(dir, "*"))
|
||||
if err != nil {
|
||||
return err
|
||||
} else if len(nlinks) > 0 {
|
||||
return nil // has subdirs -- do not prune
|
||||
}
|
||||
if err = os.Remove(dir); err != nil {
|
||||
return err
|
||||
}
|
||||
}
|
||||
|
||||
return nil
|
||||
}
|
||||
|
||||
// ensureCacheSpaceWithLock deletes entries from the cache in arbitrary order
|
||||
// until the cache has at least valueSize bytes available.
|
||||
func (d *Diskv) ensureCacheSpaceWithLock(valueSize uint64) error {
|
||||
if valueSize > d.CacheSizeMax {
|
||||
return fmt.Errorf("value size (%d bytes) too large for cache (%d bytes)", valueSize, d.CacheSizeMax)
|
||||
}
|
||||
|
||||
safe := func() bool { return (d.cacheSize + valueSize) <= d.CacheSizeMax }
|
||||
|
||||
for key, val := range d.cache {
|
||||
if safe() {
|
||||
break
|
||||
}
|
||||
|
||||
d.uncacheWithLock(key, uint64(len(val)))
|
||||
}
|
||||
|
||||
if !safe() {
|
||||
panic(fmt.Sprintf("%d bytes still won't fit in the cache! (max %d bytes)", valueSize, d.CacheSizeMax))
|
||||
}
|
||||
|
||||
return nil
|
||||
}
|
||||
|
||||
// nopWriteCloser wraps an io.Writer and provides a no-op Close method to
|
||||
// satisfy the io.WriteCloser interface.
|
||||
type nopWriteCloser struct {
|
||||
io.Writer
|
||||
}
|
||||
|
||||
func (wc *nopWriteCloser) Write(p []byte) (int, error) { return wc.Writer.Write(p) }
|
||||
func (wc *nopWriteCloser) Close() error { return nil }
|
115
vendor/github.com/peterbourgon/diskv/index.go
generated
vendored
Normal file
115
vendor/github.com/peterbourgon/diskv/index.go
generated
vendored
Normal file
@@ -0,0 +1,115 @@
|
||||
package diskv
|
||||
|
||||
import (
|
||||
"sync"
|
||||
|
||||
"github.com/google/btree"
|
||||
)
|
||||
|
||||
// Index is a generic interface for things that can
|
||||
// provide an ordered list of keys.
|
||||
type Index interface {
|
||||
Initialize(less LessFunction, keys <-chan string)
|
||||
Insert(key string)
|
||||
Delete(key string)
|
||||
Keys(from string, n int) []string
|
||||
}
|
||||
|
||||
// LessFunction is used to initialize an Index of keys in a specific order.
|
||||
type LessFunction func(string, string) bool
|
||||
|
||||
// btreeString is a custom data type that satisfies the BTree Less interface,
|
||||
// making the strings it wraps sortable by the BTree package.
|
||||
type btreeString struct {
|
||||
s string
|
||||
l LessFunction
|
||||
}
|
||||
|
||||
// Less satisfies the BTree.Less interface using the btreeString's LessFunction.
|
||||
func (s btreeString) Less(i btree.Item) bool {
|
||||
return s.l(s.s, i.(btreeString).s)
|
||||
}
|
||||
|
||||
// BTreeIndex is an implementation of the Index interface using google/btree.
|
||||
type BTreeIndex struct {
|
||||
sync.RWMutex
|
||||
LessFunction
|
||||
*btree.BTree
|
||||
}
|
||||
|
||||
// Initialize populates the BTree tree with data from the keys channel,
|
||||
// according to the passed less function. It's destructive to the BTreeIndex.
|
||||
func (i *BTreeIndex) Initialize(less LessFunction, keys <-chan string) {
|
||||
i.Lock()
|
||||
defer i.Unlock()
|
||||
i.LessFunction = less
|
||||
i.BTree = rebuild(less, keys)
|
||||
}
|
||||
|
||||
// Insert inserts the given key (only) into the BTree tree.
|
||||
func (i *BTreeIndex) Insert(key string) {
|
||||
i.Lock()
|
||||
defer i.Unlock()
|
||||
if i.BTree == nil || i.LessFunction == nil {
|
||||
panic("uninitialized index")
|
||||
}
|
||||
i.BTree.ReplaceOrInsert(btreeString{s: key, l: i.LessFunction})
|
||||
}
|
||||
|
||||
// Delete removes the given key (only) from the BTree tree.
|
||||
func (i *BTreeIndex) Delete(key string) {
|
||||
i.Lock()
|
||||
defer i.Unlock()
|
||||
if i.BTree == nil || i.LessFunction == nil {
|
||||
panic("uninitialized index")
|
||||
}
|
||||
i.BTree.Delete(btreeString{s: key, l: i.LessFunction})
|
||||
}
|
||||
|
||||
// Keys yields a maximum of n keys in order. If the passed 'from' key is empty,
|
||||
// Keys will return the first n keys. If the passed 'from' key is non-empty, the
|
||||
// first key in the returned slice will be the key that immediately follows the
|
||||
// passed key, in key order.
|
||||
func (i *BTreeIndex) Keys(from string, n int) []string {
|
||||
i.RLock()
|
||||
defer i.RUnlock()
|
||||
|
||||
if i.BTree == nil || i.LessFunction == nil {
|
||||
panic("uninitialized index")
|
||||
}
|
||||
|
||||
if i.BTree.Len() <= 0 {
|
||||
return []string{}
|
||||
}
|
||||
|
||||
btreeFrom := btreeString{s: from, l: i.LessFunction}
|
||||
skipFirst := true
|
||||
if len(from) <= 0 || !i.BTree.Has(btreeFrom) {
|
||||
// no such key, so fabricate an always-smallest item
|
||||
btreeFrom = btreeString{s: "", l: func(string, string) bool { return true }}
|
||||
skipFirst = false
|
||||
}
|
||||
|
||||
keys := []string{}
|
||||
iterator := func(i btree.Item) bool {
|
||||
keys = append(keys, i.(btreeString).s)
|
||||
return len(keys) < n
|
||||
}
|
||||
i.BTree.AscendGreaterOrEqual(btreeFrom, iterator)
|
||||
|
||||
if skipFirst && len(keys) > 0 {
|
||||
keys = keys[1:]
|
||||
}
|
||||
|
||||
return keys
|
||||
}
|
||||
|
||||
// rebuildIndex does the work of regenerating the index
|
||||
// with the given keys.
|
||||
func rebuild(less LessFunction, keys <-chan string) *btree.BTree {
|
||||
tree := btree.New(2)
|
||||
for key := range keys {
|
||||
tree.ReplaceOrInsert(btreeString{s: key, l: less})
|
||||
}
|
||||
return tree
|
||||
}
|
Reference in New Issue
Block a user