mirror of
https://github.com/mudler/luet.git
synced 2025-09-05 09:10:43 +00:00
Reward by observedDelta
Keep a record of the observed delta and maximize reward for it. Also add Noop actions which is turned off by default. Let finish the execution also when no solution is found, as we will take the minimum observed delta as result. This is done on purpose to avoid guessing "when" is a good time to stop the agent, as it could be in the middle of picking up a new action which is not the final (but we need limits, we can't let it run forever).
This commit is contained in:
@@ -16,9 +16,14 @@
|
||||
package solver
|
||||
|
||||
import (
|
||||
"encoding/json"
|
||||
"fmt"
|
||||
"strconv"
|
||||
|
||||
"github.com/mudler/luet/pkg/helpers"
|
||||
. "github.com/mudler/luet/pkg/logger"
|
||||
"gopkg.in/yaml.v2"
|
||||
|
||||
"github.com/ecooper/qlearning"
|
||||
"github.com/mudler/gophersat/bf"
|
||||
pkg "github.com/mudler/luet/pkg/package"
|
||||
@@ -28,11 +33,14 @@ import (
|
||||
type ActionType int
|
||||
|
||||
const (
|
||||
Solved = 1
|
||||
NoAction = 0
|
||||
Solved = iota
|
||||
NoSolution = iota
|
||||
Going = iota
|
||||
ActionRemoved = iota
|
||||
ActionAdded = iota
|
||||
|
||||
DoNoop = false
|
||||
)
|
||||
|
||||
//. "github.com/mudler/luet/pkg/logger"
|
||||
@@ -62,6 +70,9 @@ type QLearningResolver struct {
|
||||
Targets []pkg.Package
|
||||
Current []pkg.Package
|
||||
|
||||
observedDelta int
|
||||
observedDeltaChoice []pkg.Package
|
||||
|
||||
Agent *qlearning.SimpleAgent
|
||||
|
||||
debug bool
|
||||
@@ -76,13 +87,12 @@ func (resolver *QLearningResolver) Solve(f bf.Formula, s PackageSolver) (Package
|
||||
resolver.Formula = f
|
||||
// Our agent has a learning rate of 0.7 and discount of 1.0.
|
||||
resolver.Agent = qlearning.NewSimpleAgent(0.7, 1.0) // FIXME: Remove hardcoded values
|
||||
resolver.ToAttempt = len(resolver.Solver.(*Solver).Wanted) - 1 // TODO: type assertions must go away
|
||||
|
||||
resolver.ToAttempt = int(helpers.Factorial(uint64(len(resolver.Solver.(*Solver).Wanted)-1) * 3)) // TODO: type assertions must go away
|
||||
Debug("Attempts:", resolver.ToAttempt)
|
||||
resolver.Targets = resolver.Solver.(*Solver).Wanted
|
||||
resolver.observedDelta = 999999
|
||||
|
||||
fmt.Println("Targets", resolver.Targets)
|
||||
|
||||
resolver.Attempts = 99
|
||||
resolver.Attempts = 9000
|
||||
resolver.Attempted = make(map[string]bool, len(resolver.Targets))
|
||||
|
||||
resolver.Correct = make([]Choice, len(resolver.Targets), len(resolver.Targets))
|
||||
@@ -100,39 +110,27 @@ func (resolver *QLearningResolver) Solve(f bf.Formula, s PackageSolver) (Package
|
||||
// Reward doesn't change state so we can check what the
|
||||
// reward would be for this action, and report how the
|
||||
// env changed.
|
||||
if resolver.Reward(action) > 0.0 {
|
||||
score := resolver.Reward(action)
|
||||
Debug("Scored", score)
|
||||
if score > 0.0 {
|
||||
resolver.Log("%s was correct", action.Action.String())
|
||||
resolver.ToAttempt = 0 // We won. As we had one sat, let's take it
|
||||
//resolver.ToAttempt = 0 // We won. As we had one sat, let's take it
|
||||
} else {
|
||||
resolver.Log("%s was incorrect", action.Action.String())
|
||||
}
|
||||
}
|
||||
|
||||
// If we get good result, take it
|
||||
if resolver.IsComplete() == Solved {
|
||||
resolver.Log("Victory!")
|
||||
resolver.Log("removals needed: ", resolver.Correct)
|
||||
p := []pkg.Package{}
|
||||
fmt.Println("Targets", resolver.Targets)
|
||||
// Strip from targets the ones that the agent removed
|
||||
TARGET:
|
||||
for _, pack := range resolver.Targets {
|
||||
for _, w := range resolver.Correct {
|
||||
if pack.String() == w.String() {
|
||||
fmt.Println("Skipping", pack.String())
|
||||
continue TARGET
|
||||
// Take the result also if we did reached overall maximum attempts
|
||||
if resolver.IsComplete() == Solved || resolver.IsComplete() == NoSolution {
|
||||
Debug("Finished")
|
||||
|
||||
if len(resolver.observedDeltaChoice) != 0 {
|
||||
Debug("Taking minimum observed choiceset", resolver.observedDeltaChoice)
|
||||
// Take the minimum delta observed choice result, and consume it (Try sets the wanted list)
|
||||
resolver.Solver.(*Solver).Wanted = resolver.observedDeltaChoice
|
||||
}
|
||||
|
||||
}
|
||||
fmt.Println("Appending", pack.String())
|
||||
|
||||
p = append(p, pack)
|
||||
}
|
||||
fmt.Println("Installing")
|
||||
for _, pack := range p {
|
||||
fmt.Println(pack.String())
|
||||
}
|
||||
resolver.Solver.(*Solver).Wanted = p
|
||||
return resolver.Solver.Solve()
|
||||
} else {
|
||||
resolver.Log("Resolver couldn't find a solution!")
|
||||
@@ -158,18 +156,24 @@ func (resolver *QLearningResolver) IsComplete() int {
|
||||
}
|
||||
|
||||
func (resolver *QLearningResolver) Try(c Choice) error {
|
||||
pack := c.String()
|
||||
pack := c.Package
|
||||
packtoAdd := pkg.FromString(pack)
|
||||
resolver.Attempted[pack+strconv.Itoa(int(c.Action))] = true // increase the count
|
||||
s, _ := resolver.Solver.(*Solver)
|
||||
var filtered []pkg.Package
|
||||
|
||||
switch c.Action {
|
||||
case ActionAdded:
|
||||
for _, p := range resolver.Targets {
|
||||
found := false
|
||||
for _, p := range s.Wanted {
|
||||
if p.String() == pack {
|
||||
resolver.Solver.(*Solver).Wanted = append(resolver.Solver.(*Solver).Wanted, p)
|
||||
found = true
|
||||
break
|
||||
}
|
||||
}
|
||||
if !found {
|
||||
resolver.Solver.(*Solver).Wanted = append(resolver.Solver.(*Solver).Wanted, packtoAdd)
|
||||
}
|
||||
|
||||
case ActionRemoved:
|
||||
for _, p := range s.Wanted {
|
||||
@@ -179,9 +183,13 @@ func (resolver *QLearningResolver) Try(c Choice) error {
|
||||
}
|
||||
|
||||
resolver.Solver.(*Solver).Wanted = filtered
|
||||
default:
|
||||
return errors.New("Nonvalid action")
|
||||
case NoAction:
|
||||
Debug("Chosen to keep current state")
|
||||
}
|
||||
|
||||
Debug("Current test")
|
||||
for _, current := range resolver.Solver.(*Solver).Wanted {
|
||||
Debug("-", current.GetName())
|
||||
}
|
||||
|
||||
_, err := resolver.Solver.Solve()
|
||||
@@ -194,12 +202,21 @@ func (resolver *QLearningResolver) Try(c Choice) error {
|
||||
//
|
||||
// Choose updates the resolver's state.
|
||||
func (resolver *QLearningResolver) Choose(c Choice) bool {
|
||||
pack := pkg.FromString(c.Package)
|
||||
switch c.Action {
|
||||
case ActionRemoved:
|
||||
Debug("Chosed to remove ", pack.GetName())
|
||||
case ActionAdded:
|
||||
Debug("Chosed to add ", pack.GetName())
|
||||
}
|
||||
err := resolver.Try(c)
|
||||
|
||||
if err == nil {
|
||||
resolver.Correct = append(resolver.Correct, c)
|
||||
// resolver.Correct[index] = pack
|
||||
resolver.ToAttempt--
|
||||
resolver.Attempts-- // Decrease attempts - it's a barrier
|
||||
|
||||
} else {
|
||||
resolver.Attempts--
|
||||
return false
|
||||
@@ -212,24 +229,39 @@ func (resolver *QLearningResolver) Choose(c Choice) bool {
|
||||
// member of the qlearning.Rewarder interface. If the choice will make sat the formula, a positive score is returned.
|
||||
// Otherwise, a static -1000 is returned.
|
||||
func (resolver *QLearningResolver) Reward(action *qlearning.StateAction) float32 {
|
||||
choice := action.Action.String()
|
||||
choice := action.Action.(*Choice)
|
||||
|
||||
var filtered []pkg.Package
|
||||
//_, err := resolver.Solver.Solve()
|
||||
err := resolver.Try(*choice)
|
||||
|
||||
//Filter by fingerprint
|
||||
for _, p := range resolver.Targets {
|
||||
if p.String() != choice {
|
||||
filtered = append(filtered, p)
|
||||
}
|
||||
}
|
||||
|
||||
resolver.Solver.(*Solver).Wanted = filtered
|
||||
//resolver.Current = filtered
|
||||
_, err := resolver.Solver.Solve()
|
||||
//resolver.Solver.(*Solver).Wanted = resolver.Targets
|
||||
toBeInstalled := len(resolver.Solver.(*Solver).Wanted)
|
||||
originalTarget := len(resolver.Targets)
|
||||
noaction := choice.Action == NoAction
|
||||
delta := originalTarget - toBeInstalled
|
||||
Debug("Observed delta", resolver.observedDelta)
|
||||
Debug("Current delta", delta)
|
||||
|
||||
if err == nil {
|
||||
// if toBeInstalled == originalTarget { // Base case: all the targets matches (it shouldn't happen, but lets put a higher)
|
||||
// Debug("Target match, maximum score")
|
||||
// return 24.0 / float32(len(resolver.Attempted))
|
||||
|
||||
// }
|
||||
if DoNoop {
|
||||
if noaction && toBeInstalled == 0 { // We decided to stay in the current state, and no targets have been chosen
|
||||
Debug("Penalty, noaction and no installed")
|
||||
return -100
|
||||
}
|
||||
}
|
||||
|
||||
if delta <= resolver.observedDelta { // Try to maximise observedDelta
|
||||
resolver.observedDelta = delta
|
||||
resolver.observedDeltaChoice = resolver.Solver.(*Solver).Wanted // we store it as this is our return value at the end
|
||||
Debug("Delta reward", delta)
|
||||
return 24.0 / float32(len(resolver.Attempted))
|
||||
} else if toBeInstalled > 0 { // If we installed something, at least give a good score
|
||||
return 24.0 / float32(len(resolver.Attempted))
|
||||
}
|
||||
|
||||
}
|
||||
|
||||
@@ -239,18 +271,27 @@ func (resolver *QLearningResolver) Reward(action *qlearning.StateAction) float32
|
||||
// Next creates a new slice of qlearning.Action instances. A possible
|
||||
// action is created for each package that could be removed from the formula's target
|
||||
func (resolver *QLearningResolver) Next() []qlearning.Action {
|
||||
actions := make([]qlearning.Action, 0, (len(resolver.Targets)-1)*2)
|
||||
actions := make([]qlearning.Action, 0, (len(resolver.Targets)-1)*3)
|
||||
|
||||
fmt.Println("Actions")
|
||||
TARGETS:
|
||||
for _, pack := range resolver.Targets {
|
||||
// attempted := resolver.Attempted[pack.String()]
|
||||
// if !attempted {
|
||||
for _, current := range resolver.Solver.(*Solver).Wanted {
|
||||
if current.String() == pack.String() {
|
||||
actions = append(actions, &Choice{Package: pack.String(), Action: ActionRemoved})
|
||||
actions = append(actions, &Choice{Package: pack.String(), Action: ActionAdded})
|
||||
fmt.Println(pack.GetName(), " -> Action added: Removed - Added")
|
||||
// }
|
||||
Debug(pack.GetName(), " -> Action REMOVE")
|
||||
continue TARGETS
|
||||
}
|
||||
fmt.Println("_______")
|
||||
|
||||
}
|
||||
actions = append(actions, &Choice{Package: pack.String(), Action: ActionAdded})
|
||||
Debug(pack.GetName(), " -> Action ADD")
|
||||
|
||||
}
|
||||
|
||||
if DoNoop {
|
||||
actions = append(actions, &Choice{Package: "", Action: NoAction}) // NOOP
|
||||
}
|
||||
|
||||
return actions
|
||||
}
|
||||
|
||||
@@ -259,25 +300,38 @@ func (resolver *QLearningResolver) Next() []qlearning.Action {
|
||||
func (resolver *QLearningResolver) Log(msg string, args ...interface{}) {
|
||||
if resolver.debug {
|
||||
logMsg := fmt.Sprintf("(%d moves, %d remaining attempts) %s\n", len(resolver.Attempted), resolver.Attempts, msg)
|
||||
fmt.Printf(logMsg, args...)
|
||||
Debug(fmt.Sprintf(logMsg, args...))
|
||||
}
|
||||
}
|
||||
|
||||
// String returns a consistent hash for the current env state to be
|
||||
// used in a qlearning.Agent.
|
||||
func (resolver *QLearningResolver) String() string {
|
||||
return fmt.Sprintf("%v", resolver.Correct)
|
||||
return fmt.Sprintf("%v", resolver.Solver.(*Solver).Wanted)
|
||||
}
|
||||
|
||||
// Choice implements qlearning.Action for a package choice for removal from wanted targets
|
||||
type Choice struct {
|
||||
Package string
|
||||
Action ActionType
|
||||
Package string `json:"pack"`
|
||||
Action ActionType `json:"action"`
|
||||
}
|
||||
|
||||
func ChoiceFromString(s string) (*Choice, error) {
|
||||
var p *Choice
|
||||
err := yaml.Unmarshal([]byte(s), &p)
|
||||
if err != nil {
|
||||
return nil, err
|
||||
}
|
||||
return p, nil
|
||||
}
|
||||
|
||||
// String returns the character for the current action.
|
||||
func (choice *Choice) String() string {
|
||||
return choice.Package
|
||||
data, err := json.Marshal(choice)
|
||||
if err != nil {
|
||||
return ""
|
||||
}
|
||||
return string(data)
|
||||
}
|
||||
|
||||
// Apply updates the state of the solver for the package choice.
|
||||
|
@@ -112,12 +112,12 @@ var _ = Describe("Resolver", func() {
|
||||
solution, err := s.Install([]pkg.Package{A, D})
|
||||
Expect(err).ToNot(HaveOccurred())
|
||||
|
||||
Expect(len(solution)).To(Equal(4))
|
||||
|
||||
Expect(solution).To(ContainElement(PackageAssert{Package: A, Value: false}))
|
||||
Expect(solution).To(ContainElement(PackageAssert{Package: B, Value: false}))
|
||||
Expect(solution).To(ContainElement(PackageAssert{Package: C, Value: true}))
|
||||
Expect(solution).To(ContainElement(PackageAssert{Package: D, Value: true}))
|
||||
|
||||
Expect(len(solution)).To(Equal(4))
|
||||
})
|
||||
|
||||
It("will find out that we can install D and F by ignoring E and A", func() {
|
||||
@@ -142,14 +142,14 @@ var _ = Describe("Resolver", func() {
|
||||
solution, err := s.Install([]pkg.Package{A, D, E, F}) // D and F should go as they have no deps. A/E should be filtered by QLearn
|
||||
Expect(err).ToNot(HaveOccurred())
|
||||
|
||||
Expect(len(solution)).To(Equal(6))
|
||||
|
||||
Expect(solution).To(ContainElement(PackageAssert{Package: A, Value: false}))
|
||||
Expect(solution).To(ContainElement(PackageAssert{Package: B, Value: false}))
|
||||
Expect(solution).To(ContainElement(PackageAssert{Package: C, Value: true})) // Was already installed
|
||||
Expect(solution).To(ContainElement(PackageAssert{Package: D, Value: true}))
|
||||
Expect(solution).To(ContainElement(PackageAssert{Package: E, Value: false}))
|
||||
Expect(solution).To(ContainElement(PackageAssert{Package: F, Value: true}))
|
||||
Expect(len(solution)).To(Equal(6))
|
||||
|
||||
})
|
||||
})
|
||||
|
||||
|
Reference in New Issue
Block a user