mirror of
https://github.com/mudler/luet.git
synced 2025-06-22 05:30:18 +00:00
Instead of using gox on one side and an action to release, we can merge them together with goreleaser which will build for extra targets (arm, mips if needed in the future) and it also takes care of creating checksums, a source archive, and a changelog and creating a release with all the artifacts. All binaries should respect the old naming convention, so any scripts out there should still work. Signed-off-by: Itxaka <igarcia@suse.com>
213 lines
5.6 KiB
Go
213 lines
5.6 KiB
Go
// Copyright 2012 The Go Authors. All rights reserved.
|
|
// Use of this source code is governed by a BSD-style
|
|
// license that can be found in the LICENSE file.
|
|
|
|
// Package scrypt implements the scrypt key derivation function as defined in
|
|
// Colin Percival's paper "Stronger Key Derivation via Sequential Memory-Hard
|
|
// Functions" (https://www.tarsnap.com/scrypt/scrypt.pdf).
|
|
package scrypt // import "golang.org/x/crypto/scrypt"
|
|
|
|
import (
|
|
"crypto/sha256"
|
|
"encoding/binary"
|
|
"errors"
|
|
"math/bits"
|
|
|
|
"golang.org/x/crypto/pbkdf2"
|
|
)
|
|
|
|
const maxInt = int(^uint(0) >> 1)
|
|
|
|
// blockCopy copies n numbers from src into dst.
|
|
func blockCopy(dst, src []uint32, n int) {
|
|
copy(dst, src[:n])
|
|
}
|
|
|
|
// blockXOR XORs numbers from dst with n numbers from src.
|
|
func blockXOR(dst, src []uint32, n int) {
|
|
for i, v := range src[:n] {
|
|
dst[i] ^= v
|
|
}
|
|
}
|
|
|
|
// salsaXOR applies Salsa20/8 to the XOR of 16 numbers from tmp and in,
|
|
// and puts the result into both tmp and out.
|
|
func salsaXOR(tmp *[16]uint32, in, out []uint32) {
|
|
w0 := tmp[0] ^ in[0]
|
|
w1 := tmp[1] ^ in[1]
|
|
w2 := tmp[2] ^ in[2]
|
|
w3 := tmp[3] ^ in[3]
|
|
w4 := tmp[4] ^ in[4]
|
|
w5 := tmp[5] ^ in[5]
|
|
w6 := tmp[6] ^ in[6]
|
|
w7 := tmp[7] ^ in[7]
|
|
w8 := tmp[8] ^ in[8]
|
|
w9 := tmp[9] ^ in[9]
|
|
w10 := tmp[10] ^ in[10]
|
|
w11 := tmp[11] ^ in[11]
|
|
w12 := tmp[12] ^ in[12]
|
|
w13 := tmp[13] ^ in[13]
|
|
w14 := tmp[14] ^ in[14]
|
|
w15 := tmp[15] ^ in[15]
|
|
|
|
x0, x1, x2, x3, x4, x5, x6, x7, x8 := w0, w1, w2, w3, w4, w5, w6, w7, w8
|
|
x9, x10, x11, x12, x13, x14, x15 := w9, w10, w11, w12, w13, w14, w15
|
|
|
|
for i := 0; i < 8; i += 2 {
|
|
x4 ^= bits.RotateLeft32(x0+x12, 7)
|
|
x8 ^= bits.RotateLeft32(x4+x0, 9)
|
|
x12 ^= bits.RotateLeft32(x8+x4, 13)
|
|
x0 ^= bits.RotateLeft32(x12+x8, 18)
|
|
|
|
x9 ^= bits.RotateLeft32(x5+x1, 7)
|
|
x13 ^= bits.RotateLeft32(x9+x5, 9)
|
|
x1 ^= bits.RotateLeft32(x13+x9, 13)
|
|
x5 ^= bits.RotateLeft32(x1+x13, 18)
|
|
|
|
x14 ^= bits.RotateLeft32(x10+x6, 7)
|
|
x2 ^= bits.RotateLeft32(x14+x10, 9)
|
|
x6 ^= bits.RotateLeft32(x2+x14, 13)
|
|
x10 ^= bits.RotateLeft32(x6+x2, 18)
|
|
|
|
x3 ^= bits.RotateLeft32(x15+x11, 7)
|
|
x7 ^= bits.RotateLeft32(x3+x15, 9)
|
|
x11 ^= bits.RotateLeft32(x7+x3, 13)
|
|
x15 ^= bits.RotateLeft32(x11+x7, 18)
|
|
|
|
x1 ^= bits.RotateLeft32(x0+x3, 7)
|
|
x2 ^= bits.RotateLeft32(x1+x0, 9)
|
|
x3 ^= bits.RotateLeft32(x2+x1, 13)
|
|
x0 ^= bits.RotateLeft32(x3+x2, 18)
|
|
|
|
x6 ^= bits.RotateLeft32(x5+x4, 7)
|
|
x7 ^= bits.RotateLeft32(x6+x5, 9)
|
|
x4 ^= bits.RotateLeft32(x7+x6, 13)
|
|
x5 ^= bits.RotateLeft32(x4+x7, 18)
|
|
|
|
x11 ^= bits.RotateLeft32(x10+x9, 7)
|
|
x8 ^= bits.RotateLeft32(x11+x10, 9)
|
|
x9 ^= bits.RotateLeft32(x8+x11, 13)
|
|
x10 ^= bits.RotateLeft32(x9+x8, 18)
|
|
|
|
x12 ^= bits.RotateLeft32(x15+x14, 7)
|
|
x13 ^= bits.RotateLeft32(x12+x15, 9)
|
|
x14 ^= bits.RotateLeft32(x13+x12, 13)
|
|
x15 ^= bits.RotateLeft32(x14+x13, 18)
|
|
}
|
|
x0 += w0
|
|
x1 += w1
|
|
x2 += w2
|
|
x3 += w3
|
|
x4 += w4
|
|
x5 += w5
|
|
x6 += w6
|
|
x7 += w7
|
|
x8 += w8
|
|
x9 += w9
|
|
x10 += w10
|
|
x11 += w11
|
|
x12 += w12
|
|
x13 += w13
|
|
x14 += w14
|
|
x15 += w15
|
|
|
|
out[0], tmp[0] = x0, x0
|
|
out[1], tmp[1] = x1, x1
|
|
out[2], tmp[2] = x2, x2
|
|
out[3], tmp[3] = x3, x3
|
|
out[4], tmp[4] = x4, x4
|
|
out[5], tmp[5] = x5, x5
|
|
out[6], tmp[6] = x6, x6
|
|
out[7], tmp[7] = x7, x7
|
|
out[8], tmp[8] = x8, x8
|
|
out[9], tmp[9] = x9, x9
|
|
out[10], tmp[10] = x10, x10
|
|
out[11], tmp[11] = x11, x11
|
|
out[12], tmp[12] = x12, x12
|
|
out[13], tmp[13] = x13, x13
|
|
out[14], tmp[14] = x14, x14
|
|
out[15], tmp[15] = x15, x15
|
|
}
|
|
|
|
func blockMix(tmp *[16]uint32, in, out []uint32, r int) {
|
|
blockCopy(tmp[:], in[(2*r-1)*16:], 16)
|
|
for i := 0; i < 2*r; i += 2 {
|
|
salsaXOR(tmp, in[i*16:], out[i*8:])
|
|
salsaXOR(tmp, in[i*16+16:], out[i*8+r*16:])
|
|
}
|
|
}
|
|
|
|
func integer(b []uint32, r int) uint64 {
|
|
j := (2*r - 1) * 16
|
|
return uint64(b[j]) | uint64(b[j+1])<<32
|
|
}
|
|
|
|
func smix(b []byte, r, N int, v, xy []uint32) {
|
|
var tmp [16]uint32
|
|
R := 32 * r
|
|
x := xy
|
|
y := xy[R:]
|
|
|
|
j := 0
|
|
for i := 0; i < R; i++ {
|
|
x[i] = binary.LittleEndian.Uint32(b[j:])
|
|
j += 4
|
|
}
|
|
for i := 0; i < N; i += 2 {
|
|
blockCopy(v[i*R:], x, R)
|
|
blockMix(&tmp, x, y, r)
|
|
|
|
blockCopy(v[(i+1)*R:], y, R)
|
|
blockMix(&tmp, y, x, r)
|
|
}
|
|
for i := 0; i < N; i += 2 {
|
|
j := int(integer(x, r) & uint64(N-1))
|
|
blockXOR(x, v[j*R:], R)
|
|
blockMix(&tmp, x, y, r)
|
|
|
|
j = int(integer(y, r) & uint64(N-1))
|
|
blockXOR(y, v[j*R:], R)
|
|
blockMix(&tmp, y, x, r)
|
|
}
|
|
j = 0
|
|
for _, v := range x[:R] {
|
|
binary.LittleEndian.PutUint32(b[j:], v)
|
|
j += 4
|
|
}
|
|
}
|
|
|
|
// Key derives a key from the password, salt, and cost parameters, returning
|
|
// a byte slice of length keyLen that can be used as cryptographic key.
|
|
//
|
|
// N is a CPU/memory cost parameter, which must be a power of two greater than 1.
|
|
// r and p must satisfy r * p < 2³⁰. If the parameters do not satisfy the
|
|
// limits, the function returns a nil byte slice and an error.
|
|
//
|
|
// For example, you can get a derived key for e.g. AES-256 (which needs a
|
|
// 32-byte key) by doing:
|
|
//
|
|
// dk, err := scrypt.Key([]byte("some password"), salt, 32768, 8, 1, 32)
|
|
//
|
|
// The recommended parameters for interactive logins as of 2017 are N=32768, r=8
|
|
// and p=1. The parameters N, r, and p should be increased as memory latency and
|
|
// CPU parallelism increases; consider setting N to the highest power of 2 you
|
|
// can derive within 100 milliseconds. Remember to get a good random salt.
|
|
func Key(password, salt []byte, N, r, p, keyLen int) ([]byte, error) {
|
|
if N <= 1 || N&(N-1) != 0 {
|
|
return nil, errors.New("scrypt: N must be > 1 and a power of 2")
|
|
}
|
|
if uint64(r)*uint64(p) >= 1<<30 || r > maxInt/128/p || r > maxInt/256 || N > maxInt/128/r {
|
|
return nil, errors.New("scrypt: parameters are too large")
|
|
}
|
|
|
|
xy := make([]uint32, 64*r)
|
|
v := make([]uint32, 32*N*r)
|
|
b := pbkdf2.Key(password, salt, 1, p*128*r, sha256.New)
|
|
|
|
for i := 0; i < p; i++ {
|
|
smix(b[i*128*r:], r, N, v, xy)
|
|
}
|
|
|
|
return pbkdf2.Key(password, b, 1, keyLen, sha256.New), nil
|
|
}
|