Files
luet/vendor/github.com/kendru/darwin/go/depgraph/depgraph.go
2022-06-08 00:13:36 +02:00

233 lines
5.8 KiB
Go

package depgraph
import (
"errors"
)
// A node in this graph is just a string, so a nodeset is a map whose
// keys are the nodes that are present.
type nodeset map[string]struct{}
// depmap tracks the nodes that have some dependency relationship to
// some other node, represented by the key of the map.
type depmap map[string]nodeset
type Graph struct {
nodes nodeset
// Maintain dependency relationships in both directions. These
// data structures are the edges of the graph.
// `dependencies` tracks child -> parents.
dependencies depmap
// `dependents` tracks parent -> children.
dependents depmap
// Keep track of the nodes of the graph themselves.
}
func New() *Graph {
return &Graph{
dependencies: make(depmap),
dependents: make(depmap),
nodes: make(nodeset),
}
}
func (g *Graph) DependOn(child, parent string) error {
if child == parent {
return errors.New("self-referential dependencies not allowed")
}
if g.DependsOn(parent, child) {
return errors.New("circular dependencies not allowed")
}
// Add nodes.
g.nodes[parent] = struct{}{}
g.nodes[child] = struct{}{}
// Add edges.
addNodeToNodeset(g.dependents, parent, child)
addNodeToNodeset(g.dependencies, child, parent)
return nil
}
func (g *Graph) DependsOn(child, parent string) bool {
deps := g.Dependencies(child)
_, ok := deps[parent]
return ok
}
func (g *Graph) HasDependent(parent, child string) bool {
deps := g.Dependents(parent)
_, ok := deps[child]
return ok
}
func (g *Graph) Leaves() []string {
leaves := make([]string, 0)
for node := range g.nodes {
if _, ok := g.dependencies[node]; !ok {
leaves = append(leaves, node)
}
}
return leaves
}
// TopoSortedLayers returns a slice of all of the graph nodes in topological sort order. That is,
// if `B` depends on `A`, then `A` is guaranteed to come before `B` in the sorted output.
// The graph is guaranteed to be cycle-free because cycles are detected while building the
// graph. Additionally, the output is grouped into "layers", which are guaranteed to not have
// any dependencies within each layer. This is useful, e.g. when building an execution plan for
// some DAG, in which case each element within each layer could be executed in parallel. If you
// do not need this layered property, use `Graph.TopoSorted()`, which flattens all elements.
func (g *Graph) TopoSortedLayers() [][]string {
layers := [][]string{}
// Copy the graph
shrinkingGraph := g.clone()
for {
leaves := shrinkingGraph.Leaves()
if len(leaves) == 0 {
break
}
layers = append(layers, leaves)
for _, leafNode := range leaves {
shrinkingGraph.remove(leafNode)
}
}
return layers
}
func removeFromDepmap(dm depmap, key, node string) {
nodes := dm[key]
if len(nodes) == 1 {
// The only element in the nodeset must be `node`, so we
// can delete the entry entirely.
delete(dm, key)
} else {
// Otherwise, remove the single node from the nodeset.
delete(nodes, node)
}
}
func (g *Graph) remove(node string) {
// Remove edges from things that depend on `node`.
for dependent := range g.dependents[node] {
removeFromDepmap(g.dependencies, dependent, node)
}
delete(g.dependents, node)
// Remove all edges from node to the things it depends on.
for dependency := range g.dependencies[node] {
removeFromDepmap(g.dependents, dependency, node)
}
delete(g.dependencies, node)
// Finally, remove the node itself.
delete(g.nodes, node)
}
// TopoSorted returns all the nodes in the graph is topological sort order.
// See also `Graph.TopoSortedLayers()`.
func (g *Graph) TopoSorted() []string {
nodeCount := 0
layers := g.TopoSortedLayers()
for _, layer := range layers {
nodeCount += len(layer)
}
allNodes := make([]string, 0, nodeCount)
for _, layer := range layers {
for _, node := range layer {
allNodes = append(allNodes, node)
}
}
return allNodes
}
func (g *Graph) Dependencies(child string) nodeset {
return g.buildTransitive(child, g.immediateDependencies)
}
func (g *Graph) immediateDependencies(node string) nodeset {
return g.dependencies[node]
}
func (g *Graph) Dependents(parent string) nodeset {
return g.buildTransitive(parent, g.immediateDependents)
}
func (g *Graph) immediateDependents(node string) nodeset {
return g.dependents[node]
}
func (g *Graph) clone() *Graph {
return &Graph{
dependencies: copyDepmap(g.dependencies),
dependents: copyDepmap(g.dependents),
nodes: copyNodeset(g.nodes),
}
}
// buildTransitive starts at `root` and continues calling `nextFn` to keep discovering more nodes until
// the graph cannot produce any more. It returns the set of all discovered nodes.
func (g *Graph) buildTransitive(root string, nextFn func(string) nodeset) nodeset {
if _, ok := g.nodes[root]; !ok {
return nil
}
out := make(nodeset)
searchNext := []string{root}
for len(searchNext) > 0 {
// List of new nodes from this layer of the dependency graph. This is
// assigned to `searchNext` at the end of the outer "discovery" loop.
discovered := []string{}
for _, node := range searchNext {
// For each node to discover, find the next nodes.
for nextNode := range nextFn(node) {
// If we have not seen the node before, add it to the output as well
// as the list of nodes to traverse in the next iteration.
if _, ok := out[nextNode]; !ok {
out[nextNode] = struct{}{}
discovered = append(discovered, nextNode)
}
}
}
searchNext = discovered
}
return out
}
func copyNodeset(s nodeset) nodeset {
out := make(nodeset, len(s))
for k, v := range s {
out[k] = v
}
return out
}
func copyDepmap(m depmap) depmap {
out := make(depmap, len(m))
for k, v := range m {
out[k] = copyNodeset(v)
}
return out
}
func addNodeToNodeset(dm depmap, key, node string) {
nodes, ok := dm[key]
if !ok {
nodes = make(nodeset)
dm[key] = nodes
}
nodes[node] = struct{}{}
}