luet/vendor/github.com/crillab/gophersat/solver/pb.go
Ettore Di Giacinto 33da68c2ff
update vendor/
2020-02-11 15:00:14 +01:00

107 lines
3.0 KiB
Go

package solver
// A PBConstr is a Pseudo-Boolean constraint.
type PBConstr struct {
Lits []int // List of literals, designed with integer values. A positive value means the literal is true, a negative one it is false.
Weights []int // Weight of each lit from Lits. If nil, all lits == 1
AtLeast int // Sum of all lits must be at least this value
}
// WeightSum returns the sum of the weight of all terms.
func (c PBConstr) WeightSum() int {
if c.Weights == nil { // All weights = 1
return len(c.Lits)
}
res := 0
for _, w := range c.Weights {
res += w
}
return res
}
// Clause returns the clause associated with the given constraint.
func (c PBConstr) Clause() *Clause {
lits := make([]Lit, len(c.Lits))
for i, val := range c.Lits {
lits[i] = IntToLit(int32(val))
}
return NewPBClause(lits, c.Weights, c.AtLeast)
}
// PropClause returns a PB constraint equivalent to a propositional clause: at least one of the given
// literals must be true.
// It takes ownership of lits.
func PropClause(lits ...int) PBConstr {
return PBConstr{Lits: lits, AtLeast: 1}
}
// AtLeast returns a PB constraint stating that at least n literals must be true.
// It takes ownership of lits.
func AtLeast(lits []int, n int) PBConstr {
return PBConstr{Lits: lits, AtLeast: n}
}
// AtMost returns a PB constraint stating that at most n literals can be true.
// It takes ownership of lits.
func AtMost(lits []int, n int) PBConstr {
for i := range lits {
lits[i] = -lits[i]
}
return PBConstr{Lits: lits, AtLeast: len(lits) - n}
}
// GtEq returns a PB constraint stating that the sum of all literals multiplied by their weight
// must be at least n.
// Will panic if len(weights) != len(lits).
func GtEq(lits []int, weights []int, n int) PBConstr {
if len(weights) != 0 && len(lits) != len(weights) {
panic("not as many lits as weights")
}
for i := 0; i < len(weights); i++ {
if weights[i] < 0 {
weights[i] = -weights[i]
n += weights[i]
lits[i] = -lits[i]
}
if weights[i] == 0 {
weights = append(weights[:i], weights[i+1:]...)
lits = append(lits[:i], lits[i+1:]...)
i--
}
}
return PBConstr{Lits: lits, Weights: weights, AtLeast: n}
}
// LtEq returns a PB constraint stating that the sum of all literals multiplied by their weight
// must be at most n.
// Will panic if len(weights) != len(lits).
func LtEq(lits []int, weights []int, n int) PBConstr {
sum := 0
for i := range lits {
lits[i] = -lits[i]
sum += weights[i]
}
n = sum - n
return GtEq(lits, weights, n)
}
// Eq returns a set of PB constraints stating that the sum of all literals multiplied by their weight
// must be exactly n.
// Will panic if len(weights) != len(lits).
func Eq(lits []int, weights []int, n int) []PBConstr {
lits2 := make([]int, len(lits))
weights2 := make([]int, len(weights))
copy(lits2, lits)
copy(weights2, weights)
ge := GtEq(lits2, weights2, n)
le := LtEq(lits, weights, n)
var res []PBConstr
if ge.AtLeast > 0 {
res = append(res, ge)
}
if le.AtLeast > 0 {
res = append(res, le)
}
return res
}