luet/vendor/github.com/klauspost/compress/flate/deflate.go
Itxaka 4adc0dc9b9
Use goreleaser to build and release (#244)
Instead of using gox on one side and an action to release, we can merge
them together with goreleaser which will build for extra targets (arm,
mips if needed in the future) and it also takes care of creating
checksums, a source archive, and a changelog and creating a release with
all the artifacts.

All binaries should respect the old naming convention, so any scripts
out there should still work.

Signed-off-by: Itxaka <igarcia@suse.com>
2021-08-11 08:30:55 +02:00

821 lines
22 KiB
Go

// Copyright 2009 The Go Authors. All rights reserved.
// Copyright (c) 2015 Klaus Post
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE file.
package flate
import (
"fmt"
"io"
"math"
)
const (
NoCompression = 0
BestSpeed = 1
BestCompression = 9
DefaultCompression = -1
// HuffmanOnly disables Lempel-Ziv match searching and only performs Huffman
// entropy encoding. This mode is useful in compressing data that has
// already been compressed with an LZ style algorithm (e.g. Snappy or LZ4)
// that lacks an entropy encoder. Compression gains are achieved when
// certain bytes in the input stream occur more frequently than others.
//
// Note that HuffmanOnly produces a compressed output that is
// RFC 1951 compliant. That is, any valid DEFLATE decompressor will
// continue to be able to decompress this output.
HuffmanOnly = -2
ConstantCompression = HuffmanOnly // compatibility alias.
logWindowSize = 15
windowSize = 1 << logWindowSize
windowMask = windowSize - 1
logMaxOffsetSize = 15 // Standard DEFLATE
minMatchLength = 4 // The smallest match that the compressor looks for
maxMatchLength = 258 // The longest match for the compressor
minOffsetSize = 1 // The shortest offset that makes any sense
// The maximum number of tokens we put into a single flat block, just too
// stop things from getting too large.
maxFlateBlockTokens = 1 << 14
maxStoreBlockSize = 65535
hashBits = 17 // After 17 performance degrades
hashSize = 1 << hashBits
hashMask = (1 << hashBits) - 1
hashShift = (hashBits + minMatchLength - 1) / minMatchLength
maxHashOffset = 1 << 24
skipNever = math.MaxInt32
debugDeflate = false
)
type compressionLevel struct {
good, lazy, nice, chain, fastSkipHashing, level int
}
// Compression levels have been rebalanced from zlib deflate defaults
// to give a bigger spread in speed and compression.
// See https://blog.klauspost.com/rebalancing-deflate-compression-levels/
var levels = []compressionLevel{
{}, // 0
// Level 1-6 uses specialized algorithm - values not used
{0, 0, 0, 0, 0, 1},
{0, 0, 0, 0, 0, 2},
{0, 0, 0, 0, 0, 3},
{0, 0, 0, 0, 0, 4},
{0, 0, 0, 0, 0, 5},
{0, 0, 0, 0, 0, 6},
// Levels 7-9 use increasingly more lazy matching
// and increasingly stringent conditions for "good enough".
{8, 8, 24, 16, skipNever, 7},
{10, 16, 24, 64, skipNever, 8},
{32, 258, 258, 4096, skipNever, 9},
}
// advancedState contains state for the advanced levels, with bigger hash tables, etc.
type advancedState struct {
// deflate state
length int
offset int
maxInsertIndex int
// Input hash chains
// hashHead[hashValue] contains the largest inputIndex with the specified hash value
// If hashHead[hashValue] is within the current window, then
// hashPrev[hashHead[hashValue] & windowMask] contains the previous index
// with the same hash value.
chainHead int
hashHead [hashSize]uint32
hashPrev [windowSize]uint32
hashOffset int
// input window: unprocessed data is window[index:windowEnd]
index int
hashMatch [maxMatchLength + minMatchLength]uint32
hash uint32
ii uint16 // position of last match, intended to overflow to reset.
}
type compressor struct {
compressionLevel
w *huffmanBitWriter
// compression algorithm
fill func(*compressor, []byte) int // copy data to window
step func(*compressor) // process window
window []byte
windowEnd int
blockStart int // window index where current tokens start
err error
// queued output tokens
tokens tokens
fast fastEnc
state *advancedState
sync bool // requesting flush
byteAvailable bool // if true, still need to process window[index-1].
}
func (d *compressor) fillDeflate(b []byte) int {
s := d.state
if s.index >= 2*windowSize-(minMatchLength+maxMatchLength) {
// shift the window by windowSize
copy(d.window[:], d.window[windowSize:2*windowSize])
s.index -= windowSize
d.windowEnd -= windowSize
if d.blockStart >= windowSize {
d.blockStart -= windowSize
} else {
d.blockStart = math.MaxInt32
}
s.hashOffset += windowSize
if s.hashOffset > maxHashOffset {
delta := s.hashOffset - 1
s.hashOffset -= delta
s.chainHead -= delta
// Iterate over slices instead of arrays to avoid copying
// the entire table onto the stack (Issue #18625).
for i, v := range s.hashPrev[:] {
if int(v) > delta {
s.hashPrev[i] = uint32(int(v) - delta)
} else {
s.hashPrev[i] = 0
}
}
for i, v := range s.hashHead[:] {
if int(v) > delta {
s.hashHead[i] = uint32(int(v) - delta)
} else {
s.hashHead[i] = 0
}
}
}
}
n := copy(d.window[d.windowEnd:], b)
d.windowEnd += n
return n
}
func (d *compressor) writeBlock(tok *tokens, index int, eof bool) error {
if index > 0 || eof {
var window []byte
if d.blockStart <= index {
window = d.window[d.blockStart:index]
}
d.blockStart = index
d.w.writeBlock(tok, eof, window)
return d.w.err
}
return nil
}
// writeBlockSkip writes the current block and uses the number of tokens
// to determine if the block should be stored on no matches, or
// only huffman encoded.
func (d *compressor) writeBlockSkip(tok *tokens, index int, eof bool) error {
if index > 0 || eof {
if d.blockStart <= index {
window := d.window[d.blockStart:index]
// If we removed less than a 64th of all literals
// we huffman compress the block.
if int(tok.n) > len(window)-int(tok.n>>6) {
d.w.writeBlockHuff(eof, window, d.sync)
} else {
// Write a dynamic huffman block.
d.w.writeBlockDynamic(tok, eof, window, d.sync)
}
} else {
d.w.writeBlock(tok, eof, nil)
}
d.blockStart = index
return d.w.err
}
return nil
}
// fillWindow will fill the current window with the supplied
// dictionary and calculate all hashes.
// This is much faster than doing a full encode.
// Should only be used after a start/reset.
func (d *compressor) fillWindow(b []byte) {
// Do not fill window if we are in store-only or huffman mode.
if d.level <= 0 {
return
}
if d.fast != nil {
// encode the last data, but discard the result
if len(b) > maxMatchOffset {
b = b[len(b)-maxMatchOffset:]
}
d.fast.Encode(&d.tokens, b)
d.tokens.Reset()
return
}
s := d.state
// If we are given too much, cut it.
if len(b) > windowSize {
b = b[len(b)-windowSize:]
}
// Add all to window.
n := copy(d.window[d.windowEnd:], b)
// Calculate 256 hashes at the time (more L1 cache hits)
loops := (n + 256 - minMatchLength) / 256
for j := 0; j < loops; j++ {
startindex := j * 256
end := startindex + 256 + minMatchLength - 1
if end > n {
end = n
}
tocheck := d.window[startindex:end]
dstSize := len(tocheck) - minMatchLength + 1
if dstSize <= 0 {
continue
}
dst := s.hashMatch[:dstSize]
bulkHash4(tocheck, dst)
var newH uint32
for i, val := range dst {
di := i + startindex
newH = val & hashMask
// Get previous value with the same hash.
// Our chain should point to the previous value.
s.hashPrev[di&windowMask] = s.hashHead[newH]
// Set the head of the hash chain to us.
s.hashHead[newH] = uint32(di + s.hashOffset)
}
s.hash = newH
}
// Update window information.
d.windowEnd += n
s.index = n
}
// Try to find a match starting at index whose length is greater than prevSize.
// We only look at chainCount possibilities before giving up.
// pos = s.index, prevHead = s.chainHead-s.hashOffset, prevLength=minMatchLength-1, lookahead
func (d *compressor) findMatch(pos int, prevHead int, prevLength int, lookahead int) (length, offset int, ok bool) {
minMatchLook := maxMatchLength
if lookahead < minMatchLook {
minMatchLook = lookahead
}
win := d.window[0 : pos+minMatchLook]
// We quit when we get a match that's at least nice long
nice := len(win) - pos
if d.nice < nice {
nice = d.nice
}
// If we've got a match that's good enough, only look in 1/4 the chain.
tries := d.chain
length = prevLength
if length >= d.good {
tries >>= 2
}
wEnd := win[pos+length]
wPos := win[pos:]
minIndex := pos - windowSize
for i := prevHead; tries > 0; tries-- {
if wEnd == win[i+length] {
n := matchLen(win[i:i+minMatchLook], wPos)
if n > length && (n > minMatchLength || pos-i <= 4096) {
length = n
offset = pos - i
ok = true
if n >= nice {
// The match is good enough that we don't try to find a better one.
break
}
wEnd = win[pos+n]
}
}
if i == minIndex {
// hashPrev[i & windowMask] has already been overwritten, so stop now.
break
}
i = int(d.state.hashPrev[i&windowMask]) - d.state.hashOffset
if i < minIndex || i < 0 {
break
}
}
return
}
func (d *compressor) writeStoredBlock(buf []byte) error {
if d.w.writeStoredHeader(len(buf), false); d.w.err != nil {
return d.w.err
}
d.w.writeBytes(buf)
return d.w.err
}
// hash4 returns a hash representation of the first 4 bytes
// of the supplied slice.
// The caller must ensure that len(b) >= 4.
func hash4(b []byte) uint32 {
b = b[:4]
return hash4u(uint32(b[3])|uint32(b[2])<<8|uint32(b[1])<<16|uint32(b[0])<<24, hashBits)
}
// bulkHash4 will compute hashes using the same
// algorithm as hash4
func bulkHash4(b []byte, dst []uint32) {
if len(b) < 4 {
return
}
hb := uint32(b[3]) | uint32(b[2])<<8 | uint32(b[1])<<16 | uint32(b[0])<<24
dst[0] = hash4u(hb, hashBits)
end := len(b) - 4 + 1
for i := 1; i < end; i++ {
hb = (hb << 8) | uint32(b[i+3])
dst[i] = hash4u(hb, hashBits)
}
}
func (d *compressor) initDeflate() {
d.window = make([]byte, 2*windowSize)
d.byteAvailable = false
d.err = nil
if d.state == nil {
return
}
s := d.state
s.index = 0
s.hashOffset = 1
s.length = minMatchLength - 1
s.offset = 0
s.hash = 0
s.chainHead = -1
}
// deflateLazy is the same as deflate, but with d.fastSkipHashing == skipNever,
// meaning it always has lazy matching on.
func (d *compressor) deflateLazy() {
s := d.state
// Sanity enables additional runtime tests.
// It's intended to be used during development
// to supplement the currently ad-hoc unit tests.
const sanity = debugDeflate
if d.windowEnd-s.index < minMatchLength+maxMatchLength && !d.sync {
return
}
s.maxInsertIndex = d.windowEnd - (minMatchLength - 1)
if s.index < s.maxInsertIndex {
s.hash = hash4(d.window[s.index : s.index+minMatchLength])
}
for {
if sanity && s.index > d.windowEnd {
panic("index > windowEnd")
}
lookahead := d.windowEnd - s.index
if lookahead < minMatchLength+maxMatchLength {
if !d.sync {
return
}
if sanity && s.index > d.windowEnd {
panic("index > windowEnd")
}
if lookahead == 0 {
// Flush current output block if any.
if d.byteAvailable {
// There is still one pending token that needs to be flushed
d.tokens.AddLiteral(d.window[s.index-1])
d.byteAvailable = false
}
if d.tokens.n > 0 {
if d.err = d.writeBlock(&d.tokens, s.index, false); d.err != nil {
return
}
d.tokens.Reset()
}
return
}
}
if s.index < s.maxInsertIndex {
// Update the hash
s.hash = hash4(d.window[s.index : s.index+minMatchLength])
ch := s.hashHead[s.hash&hashMask]
s.chainHead = int(ch)
s.hashPrev[s.index&windowMask] = ch
s.hashHead[s.hash&hashMask] = uint32(s.index + s.hashOffset)
}
prevLength := s.length
prevOffset := s.offset
s.length = minMatchLength - 1
s.offset = 0
minIndex := s.index - windowSize
if minIndex < 0 {
minIndex = 0
}
if s.chainHead-s.hashOffset >= minIndex && lookahead > prevLength && prevLength < d.lazy {
if newLength, newOffset, ok := d.findMatch(s.index, s.chainHead-s.hashOffset, minMatchLength-1, lookahead); ok {
s.length = newLength
s.offset = newOffset
}
}
if prevLength >= minMatchLength && s.length <= prevLength {
// There was a match at the previous step, and the current match is
// not better. Output the previous match.
d.tokens.AddMatch(uint32(prevLength-3), uint32(prevOffset-minOffsetSize))
// Insert in the hash table all strings up to the end of the match.
// index and index-1 are already inserted. If there is not enough
// lookahead, the last two strings are not inserted into the hash
// table.
newIndex := s.index + prevLength - 1
// Calculate missing hashes
end := newIndex
if end > s.maxInsertIndex {
end = s.maxInsertIndex
}
end += minMatchLength - 1
startindex := s.index + 1
if startindex > s.maxInsertIndex {
startindex = s.maxInsertIndex
}
tocheck := d.window[startindex:end]
dstSize := len(tocheck) - minMatchLength + 1
if dstSize > 0 {
dst := s.hashMatch[:dstSize]
bulkHash4(tocheck, dst)
var newH uint32
for i, val := range dst {
di := i + startindex
newH = val & hashMask
// Get previous value with the same hash.
// Our chain should point to the previous value.
s.hashPrev[di&windowMask] = s.hashHead[newH]
// Set the head of the hash chain to us.
s.hashHead[newH] = uint32(di + s.hashOffset)
}
s.hash = newH
}
s.index = newIndex
d.byteAvailable = false
s.length = minMatchLength - 1
if d.tokens.n == maxFlateBlockTokens {
// The block includes the current character
if d.err = d.writeBlock(&d.tokens, s.index, false); d.err != nil {
return
}
d.tokens.Reset()
}
} else {
// Reset, if we got a match this run.
if s.length >= minMatchLength {
s.ii = 0
}
// We have a byte waiting. Emit it.
if d.byteAvailable {
s.ii++
d.tokens.AddLiteral(d.window[s.index-1])
if d.tokens.n == maxFlateBlockTokens {
if d.err = d.writeBlock(&d.tokens, s.index, false); d.err != nil {
return
}
d.tokens.Reset()
}
s.index++
// If we have a long run of no matches, skip additional bytes
// Resets when s.ii overflows after 64KB.
if s.ii > 31 {
n := int(s.ii >> 5)
for j := 0; j < n; j++ {
if s.index >= d.windowEnd-1 {
break
}
d.tokens.AddLiteral(d.window[s.index-1])
if d.tokens.n == maxFlateBlockTokens {
if d.err = d.writeBlock(&d.tokens, s.index, false); d.err != nil {
return
}
d.tokens.Reset()
}
s.index++
}
// Flush last byte
d.tokens.AddLiteral(d.window[s.index-1])
d.byteAvailable = false
// s.length = minMatchLength - 1 // not needed, since s.ii is reset above, so it should never be > minMatchLength
if d.tokens.n == maxFlateBlockTokens {
if d.err = d.writeBlock(&d.tokens, s.index, false); d.err != nil {
return
}
d.tokens.Reset()
}
}
} else {
s.index++
d.byteAvailable = true
}
}
}
}
func (d *compressor) store() {
if d.windowEnd > 0 && (d.windowEnd == maxStoreBlockSize || d.sync) {
d.err = d.writeStoredBlock(d.window[:d.windowEnd])
d.windowEnd = 0
}
}
// fillWindow will fill the buffer with data for huffman-only compression.
// The number of bytes copied is returned.
func (d *compressor) fillBlock(b []byte) int {
n := copy(d.window[d.windowEnd:], b)
d.windowEnd += n
return n
}
// storeHuff will compress and store the currently added data,
// if enough has been accumulated or we at the end of the stream.
// Any error that occurred will be in d.err
func (d *compressor) storeHuff() {
if d.windowEnd < len(d.window) && !d.sync || d.windowEnd == 0 {
return
}
d.w.writeBlockHuff(false, d.window[:d.windowEnd], d.sync)
d.err = d.w.err
d.windowEnd = 0
}
// storeFast will compress and store the currently added data,
// if enough has been accumulated or we at the end of the stream.
// Any error that occurred will be in d.err
func (d *compressor) storeFast() {
// We only compress if we have maxStoreBlockSize.
if d.windowEnd < len(d.window) {
if !d.sync {
return
}
// Handle extremely small sizes.
if d.windowEnd < 128 {
if d.windowEnd == 0 {
return
}
if d.windowEnd <= 32 {
d.err = d.writeStoredBlock(d.window[:d.windowEnd])
} else {
d.w.writeBlockHuff(false, d.window[:d.windowEnd], true)
d.err = d.w.err
}
d.tokens.Reset()
d.windowEnd = 0
d.fast.Reset()
return
}
}
d.fast.Encode(&d.tokens, d.window[:d.windowEnd])
// If we made zero matches, store the block as is.
if d.tokens.n == 0 {
d.err = d.writeStoredBlock(d.window[:d.windowEnd])
// If we removed less than 1/16th, huffman compress the block.
} else if int(d.tokens.n) > d.windowEnd-(d.windowEnd>>4) {
d.w.writeBlockHuff(false, d.window[:d.windowEnd], d.sync)
d.err = d.w.err
} else {
d.w.writeBlockDynamic(&d.tokens, false, d.window[:d.windowEnd], d.sync)
d.err = d.w.err
}
d.tokens.Reset()
d.windowEnd = 0
}
// write will add input byte to the stream.
// Unless an error occurs all bytes will be consumed.
func (d *compressor) write(b []byte) (n int, err error) {
if d.err != nil {
return 0, d.err
}
n = len(b)
for len(b) > 0 {
d.step(d)
b = b[d.fill(d, b):]
if d.err != nil {
return 0, d.err
}
}
return n, d.err
}
func (d *compressor) syncFlush() error {
d.sync = true
if d.err != nil {
return d.err
}
d.step(d)
if d.err == nil {
d.w.writeStoredHeader(0, false)
d.w.flush()
d.err = d.w.err
}
d.sync = false
return d.err
}
func (d *compressor) init(w io.Writer, level int) (err error) {
d.w = newHuffmanBitWriter(w)
switch {
case level == NoCompression:
d.window = make([]byte, maxStoreBlockSize)
d.fill = (*compressor).fillBlock
d.step = (*compressor).store
case level == ConstantCompression:
d.w.logNewTablePenalty = 8
d.window = make([]byte, 32<<10)
d.fill = (*compressor).fillBlock
d.step = (*compressor).storeHuff
case level == DefaultCompression:
level = 5
fallthrough
case level >= 1 && level <= 6:
d.w.logNewTablePenalty = 8
d.fast = newFastEnc(level)
d.window = make([]byte, maxStoreBlockSize)
d.fill = (*compressor).fillBlock
d.step = (*compressor).storeFast
case 7 <= level && level <= 9:
d.w.logNewTablePenalty = 10
d.state = &advancedState{}
d.compressionLevel = levels[level]
d.initDeflate()
d.fill = (*compressor).fillDeflate
d.step = (*compressor).deflateLazy
default:
return fmt.Errorf("flate: invalid compression level %d: want value in range [-2, 9]", level)
}
d.level = level
return nil
}
// reset the state of the compressor.
func (d *compressor) reset(w io.Writer) {
d.w.reset(w)
d.sync = false
d.err = nil
// We only need to reset a few things for Snappy.
if d.fast != nil {
d.fast.Reset()
d.windowEnd = 0
d.tokens.Reset()
return
}
switch d.compressionLevel.chain {
case 0:
// level was NoCompression or ConstantCompresssion.
d.windowEnd = 0
default:
s := d.state
s.chainHead = -1
for i := range s.hashHead {
s.hashHead[i] = 0
}
for i := range s.hashPrev {
s.hashPrev[i] = 0
}
s.hashOffset = 1
s.index, d.windowEnd = 0, 0
d.blockStart, d.byteAvailable = 0, false
d.tokens.Reset()
s.length = minMatchLength - 1
s.offset = 0
s.hash = 0
s.ii = 0
s.maxInsertIndex = 0
}
}
func (d *compressor) close() error {
if d.err != nil {
return d.err
}
d.sync = true
d.step(d)
if d.err != nil {
return d.err
}
if d.w.writeStoredHeader(0, true); d.w.err != nil {
return d.w.err
}
d.w.flush()
d.w.reset(nil)
return d.w.err
}
// NewWriter returns a new Writer compressing data at the given level.
// Following zlib, levels range from 1 (BestSpeed) to 9 (BestCompression);
// higher levels typically run slower but compress more.
// Level 0 (NoCompression) does not attempt any compression; it only adds the
// necessary DEFLATE framing.
// Level -1 (DefaultCompression) uses the default compression level.
// Level -2 (ConstantCompression) will use Huffman compression only, giving
// a very fast compression for all types of input, but sacrificing considerable
// compression efficiency.
//
// If level is in the range [-2, 9] then the error returned will be nil.
// Otherwise the error returned will be non-nil.
func NewWriter(w io.Writer, level int) (*Writer, error) {
var dw Writer
if err := dw.d.init(w, level); err != nil {
return nil, err
}
return &dw, nil
}
// NewWriterDict is like NewWriter but initializes the new
// Writer with a preset dictionary. The returned Writer behaves
// as if the dictionary had been written to it without producing
// any compressed output. The compressed data written to w
// can only be decompressed by a Reader initialized with the
// same dictionary.
func NewWriterDict(w io.Writer, level int, dict []byte) (*Writer, error) {
zw, err := NewWriter(w, level)
if err != nil {
return nil, err
}
zw.d.fillWindow(dict)
zw.dict = append(zw.dict, dict...) // duplicate dictionary for Reset method.
return zw, err
}
// A Writer takes data written to it and writes the compressed
// form of that data to an underlying writer (see NewWriter).
type Writer struct {
d compressor
dict []byte
}
// Write writes data to w, which will eventually write the
// compressed form of data to its underlying writer.
func (w *Writer) Write(data []byte) (n int, err error) {
return w.d.write(data)
}
// Flush flushes any pending data to the underlying writer.
// It is useful mainly in compressed network protocols, to ensure that
// a remote reader has enough data to reconstruct a packet.
// Flush does not return until the data has been written.
// Calling Flush when there is no pending data still causes the Writer
// to emit a sync marker of at least 4 bytes.
// If the underlying writer returns an error, Flush returns that error.
//
// In the terminology of the zlib library, Flush is equivalent to Z_SYNC_FLUSH.
func (w *Writer) Flush() error {
// For more about flushing:
// http://www.bolet.org/~pornin/deflate-flush.html
return w.d.syncFlush()
}
// Close flushes and closes the writer.
func (w *Writer) Close() error {
return w.d.close()
}
// Reset discards the writer's state and makes it equivalent to
// the result of NewWriter or NewWriterDict called with dst
// and w's level and dictionary.
func (w *Writer) Reset(dst io.Writer) {
if len(w.dict) > 0 {
// w was created with NewWriterDict
w.d.reset(dst)
if dst != nil {
w.d.fillWindow(w.dict)
}
} else {
// w was created with NewWriter
w.d.reset(dst)
}
}
// ResetDict discards the writer's state and makes it equivalent to
// the result of NewWriter or NewWriterDict called with dst
// and w's level, but sets a specific dictionary.
func (w *Writer) ResetDict(dst io.Writer, dict []byte) {
w.dict = dict
w.d.reset(dst)
w.d.fillWindow(w.dict)
}