luet/vendor/github.com/crillab/gophersat/solver/problem.go
Ettore Di Giacinto d7a04465fd update vendor/
2020-11-03 17:21:32 +01:00

328 lines
7.5 KiB
Go

package solver
import (
"fmt"
)
// A Problem is a list of clauses & a nb of vars.
type Problem struct {
NbVars int // Total nb of vars
Clauses []*Clause // List of non-empty, non-unit clauses
Status Status // Status of the problem. Can be trivially UNSAT (if empty clause was met or inferred by UP) or Indet.
Units []Lit // List of unit literal found in the problem.
Model []decLevel // For each var, its inferred binding. 0 means unbound, 1 means bound to true, -1 means bound to false.
minLits []Lit // For an optimisation problem, the list of lits whose sum must be minimized
minWeights []int // For an optimisation problem, the weight of each lit.
}
// Optim returns true iff pb is an optimisation problem, ie
// a problem for which we not only want to find a model, but also
// the best possible model according to an optimization constraint.
func (pb *Problem) Optim() bool {
return pb.minLits != nil
}
// CNF returns a DIMACS CNF representation of the problem.
func (pb *Problem) CNF() string {
res := fmt.Sprintf("p cnf %d %d\n", pb.NbVars, len(pb.Clauses)+len(pb.Units))
for _, unit := range pb.Units {
res += fmt.Sprintf("%d 0\n", unit.Int())
}
for _, clause := range pb.Clauses {
res += fmt.Sprintf("%s\n", clause.CNF())
}
return res
}
// PBString returns a representation of the problem as a pseudo-boolean problem.
func (pb *Problem) PBString() string {
res := pb.costFuncString()
for _, unit := range pb.Units {
sign := ""
if !unit.IsPositive() {
sign = "~"
unit = unit.Negation()
}
res += fmt.Sprintf("1 %sx%d = 1 ;\n", sign, unit.Int())
}
for _, clause := range pb.Clauses {
res += fmt.Sprintf("%s\n", clause.PBString())
}
return res
}
// SetCostFunc sets the function to minimize when optimizing the problem.
// If all weights are 1, weights can be nil.
// In all other cases, len(lits) must be the same as len(weights).
func (pb *Problem) SetCostFunc(lits []Lit, weights []int) {
if weights != nil && len(lits) != len(weights) {
panic("length of lits and of weights don't match")
}
pb.minLits = lits
pb.minWeights = weights
}
// costFuncString returns a string representation of the cost function of the problem, if any, followed by a \n.
// If there is no cost function, the empty string will be returned.
func (pb *Problem) costFuncString() string {
if pb.minLits == nil {
return ""
}
res := "min: "
for i, lit := range pb.minLits {
w := 1
if pb.minWeights != nil {
w = pb.minWeights[i]
}
sign := ""
if w >= 0 && i != 0 { // No plus sign for the first term or for negative terms.
sign = "+"
}
val := lit.Int()
neg := ""
if val < 0 {
val = -val
neg = "~"
}
res += fmt.Sprintf("%s%d %sx%d", sign, w, neg, val)
}
res += " ;\n"
return res
}
func (pb *Problem) updateStatus(nbClauses int) {
pb.Clauses = pb.Clauses[:nbClauses]
if pb.Status == Indet && nbClauses == 0 {
pb.Status = Sat
}
}
func (pb *Problem) simplifyClause(idx int, idxClauses [][]int, removed []bool) {
c := pb.Clauses[idx]
k := 0
sat := false
for j := 0; j < c.Len(); j++ {
lit := c.Get(j)
v := lit.Var()
if pb.Model[v] == 0 {
c.Set(k, c.Get(j))
k++
idxClauses[lit] = append(idxClauses[lit], idx)
} else if (pb.Model[v] > 0) == lit.IsPositive() {
sat = true
break
}
}
if sat {
removed[idx] = true
return
}
if k == 0 {
pb.Status = Unsat
return
}
if k == 1 {
pb.addUnit(c.First())
if pb.Status == Unsat {
return
}
removed[idx] = true
}
c.Shrink(k)
}
// rmClauses removes clauses that are already satisfied after simplification.
func (pb *Problem) rmClauses(removed []bool) {
j := 0
for i, rm := range removed {
if !rm {
pb.Clauses[j] = pb.Clauses[i]
j++
}
}
pb.Clauses = pb.Clauses[:j]
}
// simplify simplifies the pure SAT problem, i.e runs unit propagation if possible.
func (pb *Problem) simplify2() {
nbClauses := len(pb.Clauses)
restart := true
for restart {
restart = false
i := 0
for i < nbClauses {
c := pb.Clauses[i]
nbLits := c.Len()
clauseSat := false
j := 0
for j < nbLits {
lit := c.Get(j)
if pb.Model[lit.Var()] == 0 {
j++
} else if (pb.Model[lit.Var()] == 1) == lit.IsPositive() {
clauseSat = true
break
} else {
nbLits--
c.Set(j, c.Get(nbLits))
}
}
if clauseSat {
nbClauses--
pb.Clauses[i] = pb.Clauses[nbClauses]
} else if nbLits == 0 {
pb.Status = Unsat
return
} else if nbLits == 1 { // UP
pb.addUnit(c.First())
if pb.Status == Unsat {
return
}
nbClauses--
pb.Clauses[i] = pb.Clauses[nbClauses]
restart = true // Must restart, since this lit might have made one more clause Unit or SAT.
} else { // nb lits unbound > cardinality
if c.Len() != nbLits {
c.Shrink(nbLits)
}
i++
}
}
}
pb.updateStatus(nbClauses)
}
// simplifyCard simplifies the problem, i.e runs unit propagation if possible.
func (pb *Problem) simplifyCard() {
nbClauses := len(pb.Clauses)
restart := true
for restart {
restart = false
i := 0
for i < nbClauses {
c := pb.Clauses[i]
nbLits := c.Len()
card := c.Cardinality()
clauseSat := false
nbSat := 0
j := 0
for j < nbLits {
lit := c.Get(j)
if pb.Model[lit.Var()] == 0 {
j++
} else if (pb.Model[lit.Var()] == 1) == lit.IsPositive() {
nbSat++
if nbSat == card {
clauseSat = true
break
}
} else {
nbLits--
c.Set(j, c.Get(nbLits))
}
}
if clauseSat {
nbClauses--
pb.Clauses[i] = pb.Clauses[nbClauses]
} else if nbLits < card {
pb.Status = Unsat
return
} else if nbLits == card { // UP
pb.addUnits(c, nbLits)
if pb.Status == Unsat {
return
}
nbClauses--
pb.Clauses[i] = pb.Clauses[nbClauses]
restart = true // Must restart, since this lit might have made one more clause Unit or SAT.
} else { // nb lits unbound > cardinality
if c.Len() != nbLits {
c.Shrink(nbLits)
}
i++
}
}
}
pb.updateStatus(nbClauses)
}
func (pb *Problem) simplifyPB() {
modified := true
for modified {
modified = false
i := 0
for i < len(pb.Clauses) {
c := pb.Clauses[i]
j := 0
card := c.Cardinality()
wSum := c.WeightSum()
for j < c.Len() {
lit := c.Get(j)
v := lit.Var()
w := c.Weight(j)
if pb.Model[v] == 0 { // Literal not assigned: is it unit?
if wSum-w < card { // Lit must be true for the clause to be satisfiable
pb.addUnit(lit)
if pb.Status == Unsat {
return
}
c.removeLit(j)
card -= w
c.updateCardinality(-w)
wSum -= w
modified = true
} else {
j++
}
} else { // Bound literal: remove it and update, if needed, cardinality
wSum -= w
if (pb.Model[v] == 1) == lit.IsPositive() {
card -= w
c.updateCardinality(-w)
}
c.removeLit(j)
modified = true
}
}
if card <= 0 { // Clause is Sat
pb.Clauses[i] = pb.Clauses[len(pb.Clauses)-1]
pb.Clauses = pb.Clauses[:len(pb.Clauses)-1]
modified = true
} else if wSum < card {
pb.Clauses = nil
pb.Status = Unsat
return
} else {
i++
}
}
}
if pb.Status == Indet && len(pb.Clauses) == 0 {
pb.Status = Sat
}
}
func (pb *Problem) addUnit(lit Lit) {
if lit.IsPositive() {
if pb.Model[lit.Var()] == -1 {
pb.Status = Unsat
return
}
pb.Model[lit.Var()] = 1
} else {
if pb.Model[lit.Var()] == 1 {
pb.Status = Unsat
return
}
pb.Model[lit.Var()] = -1
}
pb.Units = append(pb.Units, lit)
}
func (pb *Problem) addUnits(c *Clause, nbLits int) {
for i := 0; i < nbLits; i++ {
lit := c.Get(i)
pb.addUnit(lit)
}
}