![multus-cni Logo](https://github.com/Intel-Corp/multus-cni/blob/master/doc/images/Multus.png) # MULTUS CNI plugin - *Multus* is the latin word for “Multi” - As the name suggests, it acts as the Multi plugin in Kubernetes and provides the Multi interface support in a pod - It is generic to run with any plugins like Calico, Weave, SRIOV, Ciliuim, Canal and Flannel, with different IPAM and networks. - It is a contact between the container runtime and other plugins, and it doesn't have any of its own net configuration, it calls other plugins like flannel/calico to do the real net conf job. - Multus reuses the concept of invoking the delegates in flannel, it groups the multi plugins into delegates and invoke each other in sequential order, according to the JSON scheme in the cni configuration. - No. of plugins supported is dependent upon the number of delegates in the conf file. - Master plugin invokes "eth0" interface in the pod, rest of plugins(Mininon plugins eg: sriov,ipam) invoke interfaces as "net0", "net1".. "netn" - The "masterplugin" is the only net conf option of multus cni, it identifies the primary network. The default route will point to the primary network Please read [CNI](https://github.com/containernetworking/cni) for more information on container networking. ## Multi-Homed pod

## Build **This plugin requires Go 1.8 to build.** Go 1.5 users will need to set `GO15VENDOREXPERIMENT=1` to get vendored dependencies. This flag is set by default in 1.6. ``` #./build ``` ## Work flow

## Network configuration reference * `name` (string, required): the name of the network * `type` (string, required): "multus" * `kubeconfig` (string, optional): kubeconfig file for the out of cluster communication with kube-apiserver, Refer the doc * `delegates` (([]map,required): number of delegate details in the Multus, ignored in case kubeconfig is added. * `masterplugin` (bool,required): master plugin to report back the IP address and DNS to the container ## Usage with Kubernetes TPR based Network Objects Please refer the Kubernetes Network SIG - Multiple Network PoC proposal for more details refer the link - [K8s Multiple Network proposal](https://docs.google.com/document/d/1TW3P4c8auWwYy-w_5afIPDcGNLK3LZf0m14943eVfVg/edit) ### Creating “Network” third party resource in kubernetes 1. Create a Third party resource “tprnetwork.yaml” for the network object as shown below ``` apiVersion: extensions/v1beta1 kind: ThirdPartyResource metadata: name: network.kubernetes.com description: "A specification of a Network obj in the kubernetes" versions: - name: v1 ``` 2. Run kubectl create command for the Third Party Resource ``` # kubectl create -f ./tprnetwork.yaml thirdpartyresource "network.kubernetes.com" created ``` 3. Run kubectl get command to check the Network TPR creation ``` # kubectl get thirdpartyresource NAME DESCRIPTION VERSION(S) network.kubernetes.com A specification of a Network obj in the kubernetes v1 ``` ### Creating “Custom Network objects” third party resource in kubernetes 1. After the ThirdPartyResource object has been created you can create network objects. Network objects should contain network fields. These fields are in JSON format. In the following example, a plugin and args fields are set to the object of kind Network. The kind Network is derived from the metadata.name of the ThirdPartyResource object we created above. 2. Save the below following YAML to flannel-network.yaml ``` apiVersion: "kubernetes.com/v1" kind: Network metadata: name: flannel-conf plugin: flannel args: '[ { "delegate": { "isDefaultGateway": true } } ]' ``` 2. Run kubectl create command for the TPR - Network object ``` # kubectl create -f ./flannel-network.yaml network "flannel-conf" created ``` 3. Manage the Network objects using kubectl. ``` # kubectl get network NAME KIND flannel-conf Network.v1.kubernetes.com ``` 4. You can also view the raw JSON data. Here you can see that it contains the custom plugin and args fields from the yaml you used to create it: ``` # kubectl get network flannel-conf -o yaml apiVersion: kubernetes.com/v1 args: '[ { "delegate": { "isDefaultGateway": true } } ]' kind: Network metadata: creationTimestamp: 2017-06-28T14:20:52Z name: flannel-conf namespace: default resourceVersion: "5422876" selfLink: /apis/kubernetes.com/v1/namespaces/default/networks/flannel-conf uid: fdcb94a2-5c0c-11e7-bbeb-408d5c537d27 plugin: flannel ``` 4. The plugin field should be the name of the CNI plugin and args should have the flannel args, it should be in the the JSON format as shown above. **User can create network objects for Calico, Weave, Romana, & Cilium and test the multus.** 5. Save the below following YAML to sriov-network.yaml. Refer [Intel - SR-IOV CNI](https://github.com/Intel-Corp/sriov-cni) or contact @kural in [Intel-Corp Slack](https://intel-corp.herokuapp.com/) for running the DPDK based workloads in Kubernetes ``` apiVersion: "kubernetes.com/v1" kind: Network metadata: name: sriov-conf plugin: sriov args: '[ { "if0": "enp12s0f1", "ipam": { "type": "host-local", "subnet": "10.56.217.0/24", "rangeStart": "10.56.217.171", "rangeEnd": "10.56.217.181", "routes": [ { "dst": "0.0.0.0/0" } ], "gateway": "10.56.217.1" } } ]' ``` 6. Save the below following YAML to sriov-vlanid-l2enable-network.yaml ``` apiVersion: "kubernetes.com/v1" kind: Network metadata: name: sriov-vlanid-l2enable-conf plugin: sriov args: '[ { "if0": "enp2s0", "vlan": 210, "if0name": "north", "l2enable": true } ]' ``` 7. Follows the step 2 to create the network object “sriov-vlanid-l2enable-conf” and “sriov-conf” 8. Manage the Network objects using kubectl. ``` # kubectl get network NAME KIND flannel-conf Network.v1.kubernetes.com sriov-vlanid-l2enable-conf Network.v1.kubernetes.com sriov-conf Network.v1.kubernetes.com ``` ### Configuring Multus to use the kubeconfig 1. Create Multus CNI configuration file /etc/cni/net.d/multus-cni.conf with below content in minions. Use only the absolute path to point to the kubeconfig file (it may change depending upon your cluster env) and make sure all CNI binary files are in `\opt\cni\bin` dir ``` { "name": "minion-cni-network", "type": "multus", "kubeconfig": "/etc/kubernetes/node-kubeconfig.yaml" } ``` 2. Restart kubelet service ``` # systemctl restart kubelet ``` ### Configuring Pod to use the TPR Network objects 1. Save the below following YAML to pod-multi-network.yaml. In this case flannel-conf network object act as the primary network. ``` # cat pod-multi-network.yaml apiVersion: v1 kind: Pod metadata: name: multus-multi-net-poc annotations: networks: '[ { "name": "flannel-conf" }, { "name": "sriov-conf"}, { "name": "sriov-vlanid-l2enable-conf" } ]' spec: # specification of the pod's contents containers: - name: multus-multi-net-poc image: "busybox" command: ["top"] stdin: true tty: true ``` 3. Create Multiple network based pod from the master node ``` # kubectl create -f ./pod-multi-network.yaml pod "multus-multi-net-poc" created ``` 4. Get the details of the running pod from the master ``` # kubectl get pods NAME READY STATUS RESTARTS AGE multus-multi-net-poc 1/1 Running 0 30s ``` ### Verifying Pod network 1. Run “ifconfig” command inside the container: ``` # kubectl exec -it multus-multi-net-poc -- ifconfig eth0 Link encap:Ethernet HWaddr 06:21:91:2D:74:B9 inet addr:192.168.42.3 Bcast:0.0.0.0 Mask:255.255.255.0 inet6 addr: fe80::421:91ff:fe2d:74b9/64 Scope:Link UP BROADCAST RUNNING MULTICAST MTU:1450 Metric:1 RX packets:0 errors:0 dropped:0 overruns:0 frame:0 TX packets:8 errors:0 dropped:0 overruns:0 carrier:0 collisions:0 txqueuelen:0 RX bytes:0 (0.0 B) TX bytes:648 (648.0 B) lo Link encap:Local Loopback inet addr:127.0.0.1 Mask:255.0.0.0 inet6 addr: ::1/128 Scope:Host UP LOOPBACK RUNNING MTU:65536 Metric:1 RX packets:0 errors:0 dropped:0 overruns:0 frame:0 TX packets:0 errors:0 dropped:0 overruns:0 carrier:0 collisions:0 txqueuelen:1 RX bytes:0 (0.0 B) TX bytes:0 (0.0 B) net0 Link encap:Ethernet HWaddr D2:94:98:82:00:00 inet addr:10.56.217.171 Bcast:0.0.0.0 Mask:255.255.255.0 inet6 addr: fe80::d094:98ff:fe82:0/64 Scope:Link UP BROADCAST RUNNING MULTICAST MTU:1500 Metric:1 RX packets:2 errors:0 dropped:0 overruns:0 frame:0 TX packets:8 errors:0 dropped:0 overruns:0 carrier:0 collisions:0 txqueuelen:1000 RX bytes:120 (120.0 B) TX bytes:648 (648.0 B) north Link encap:Ethernet HWaddr BE:F2:48:42:83:12 inet6 addr: fe80::bcf2:48ff:fe42:8312/64 Scope:Link UP BROADCAST RUNNING MULTICAST MTU:1500 Metric:1 RX packets:1420 errors:0 dropped:0 overruns:0 frame:0 TX packets:1276 errors:0 dropped:0 overruns:0 carrier:0 collisions:0 txqueuelen:1000 RX bytes:95956 (93.7 KiB) TX bytes:82200 (80.2 KiB) ``` Interface name | Description ------------ | ------------- lo | loopback eth0@if41 | Flannel network tap interface net0 | VF0 of NIC 1 assigned to the container by [Intel - SR-IOV CNI](https://github.com/Intel-Corp/sriov-cni) plugin north | VF0 of NIC 2 assigned with VLAN ID 210 to the container by SR-IOV CNI plugin 2. Check the vlan ID of the NIC 2 VFs ``` # ip link show enp2s0 20: enp2s0: mtu 1500 qdisc mq state UP mode DEFAULT group default qlen 1000 link/ether 24:8a:07:e8:7d:40 brd ff:ff:ff:ff:ff:ff vf 0 MAC 00:00:00:00:00:00, vlan 210, spoof checking off, link-state auto vf 1 MAC 00:00:00:00:00:00, vlan 4095, spoof checking off, link-state auto vf 2 MAC 00:00:00:00:00:00, vlan 4095, spoof checking off, link-state auto vf 3 MAC 00:00:00:00:00:00, vlan 4095, spoof checking off, link-state auto ``` ## Using Multus Conf file Given the following network configuration: ``` # tee /etc/cni/net.d/multus-cni.conf <<-'EOF' { "name": "multus-demo-network", "type": "multus", "delegates": [ { "type": "sriov", #part of sriov plugin conf "if0": "enp12s0f0", "ipam": { "type": "host-local", "subnet": "10.56.217.0/24", "rangeStart": "10.56.217.131", "rangeEnd": "10.56.217.190", "routes": [ { "dst": "0.0.0.0/0" } ], "gateway": "10.56.217.1" } }, { "type": "ptp", "ipam": { "type": "host-local", "subnet": "10.168.1.0/24", "rangeStart": "10.168.1.11", "rangeEnd": "10.168.1.20", "routes": [ { "dst": "0.0.0.0/0" } ], "gateway": "10.168.1.1" } }, { "type": "flannel", "masterplugin": true, "delegate": { "isDefaultGateway": true } } ] } EOF ``` ## Testing the Multus CNI with Multiple Flannel Network Github user [YYGCui](https://github.com/YYGCui) has used Multiple flannel network to work with Multus CNI plugin. Please refer this [closed issue](https://github.com/Intel-Corp/multus-cni/issues/7) for Multiple overlay network support with Multus CNI. ## Testing the Multus CNI with docker Make sure that the multus, [sriov](https://github.com/Intel-Corp/sriov-cni), [flannel](https://github.com/containernetworking/cni/blob/master/Documentation/flannel.md), and [ptp](https://github.com/containernetworking/cni/blob/master/Documentation/ptp.md) binaries are in the `/opt/cni/bin` directories and follow the steps as mention in the [CNI](https://github.com/containernetworking/cni/#running-a-docker-container-with-network-namespace-set-up-by-cni-plugins) ## Testing the Multus CNI with Kubernetes Refer the Kubernetes User Guide and network plugin * [Single Node](https://kubernetes.io/docs/getting-started-guides/fedora/fedora_manual_config/) * [Multi Node](https://kubernetes.io/docs/getting-started-guides/fedora/flannel_multi_node_cluster/) * [Network Plugin](https://kubernetes.io/docs/admin/network-plugins/) Kubelet must be configured to run with the CNI `--network-plugin`, with the following configuration information. Edit `/etc/default/kubelet` file and add `KUBELET_OPTS`: ``` KUBELET_OPTS="... --network-plugin-dir=/etc/cni/net.d --network-plugin=cni " ``` Restart the kubelet ``` # systemctl restart kubelet.service ``` ### Launching workloads in Kubernetes Launch the workload using yaml file in the kubernetes master, with above configuration in the multus CNI, each pod should have multiple interfaces. > Note: To verify whether Multus CNI plugin is working fine create a pod containing one “busybox” container and execute “ip link” command to check if interfaces management follows configuration. 1. Create “multus-test.yaml” file containing below configuration. Created pod will consist of one “busybox” container running “top” command. ``` apiVersion: v1 kind: Pod metadata: name: multus-test spec: # specification of the pod's contents restartPolicy: Never containers: - name: test1 image: "busybox" command: ["top"] stdin: true tty: true ``` 2. Create pod using command: ``` # kubectl create -f multus-test.yaml pod "multus-test" created ``` 3. Run “ip link” command inside the container: ``` # 1: lo: mtu 65536 qdisc noqueue qlen 1 link/loopback 00:00:00:00:00:00 brd 00:00:00:00:00:00 3: eth0@if41: mtu 1500 qdisc noqueue link/ether 26:52:6b:d8:44:2d brd ff:ff:ff:ff:ff:ff 20: net0: mtu 1500 qdisc mq qlen 1000 link/ether f6:fb:21:4f:1d:63 brd ff:ff:ff:ff:ff:ff 21: net1: mtu 1500 qdisc mq qlen 1000 link/ether 76:13:b1:60:00:00 brd ff:ff:ff:ff:ff:ff ``` Interface name | Description ------------ | ------------- lo | loopback eth0@if41 | Flannel network tap interface net0 | VF assigned to the container by [SR-IOV CNI](https://github.com/Intel-Corp/sriov-cni) plugin net1 | ptp localhost interface ### Contacts For any questions about Multus CNI, please reach out on github issue or feel free to contact the developer @kural in our [Intel-Corp Slack](https://intel-corp.herokuapp.com/)