mirror of
https://github.com/hpcaitech/ColossalAI.git
synced 2025-06-26 07:22:12 +00:00
[memory] add model data tensor moving api (#503)
This commit is contained in:
parent
65ad47c35c
commit
0035b7be07
@ -8,7 +8,7 @@ from .common import (clip_grad_norm_fp32, conditional_context, copy_tensor_paral
|
||||
sync_model_param)
|
||||
from .data_sampler import DataParallelSampler, get_dataloader
|
||||
from .gradient_accumulation import accumulate_gradient
|
||||
from .memory import report_memory_usage
|
||||
from .memory_utils.memory_monitor import report_memory_usage
|
||||
from .timer import MultiTimer, Timer
|
||||
from .tensor_detector import TensorDetector
|
||||
|
||||
|
@ -1,9 +0,0 @@
|
||||
import torch
|
||||
from colossalai.utils import get_current_device
|
||||
|
||||
|
||||
def col_cuda_memory_capacity():
|
||||
"""
|
||||
Get cuda memory capacity of the current cuda.
|
||||
"""
|
||||
return torch.cuda.get_device_properties(get_current_device()).total_memory
|
@ -1,19 +0,0 @@
|
||||
import torch
|
||||
from colossalai.utils.memory_tracer.model_data_memtracer import GLOBAL_MODEL_DATA_TRACER
|
||||
|
||||
|
||||
def col_move_to_cpu(t: torch.Tensor):
|
||||
assert isinstance(t, torch.Tensor)
|
||||
if t.device.type == 'cpu':
|
||||
return
|
||||
|
||||
GLOBAL_MODEL_DATA_TRACER.delete_tensor(t)
|
||||
t.data = t.data.cpu()
|
||||
|
||||
|
||||
def col_modeldata_allocate(device: torch.device) -> torch.Tensor:
|
||||
pass
|
||||
|
||||
|
||||
def col_modeldata_release(t: torch.Tensor):
|
||||
pass
|
@ -1,11 +0,0 @@
|
||||
from colossalai.zero.sharded_param import ShardedTensor
|
||||
from typing import Union
|
||||
import torch
|
||||
|
||||
|
||||
def col_tensor_mem_usage(t: Union[torch.Tensor, ShardedTensor]) -> int:
|
||||
if isinstance(t, ShardedTensor):
|
||||
target = t.payload
|
||||
else:
|
||||
target = t
|
||||
return target.numel() * target.element_size()
|
@ -1,6 +1,15 @@
|
||||
from colossalai.context.singleton_meta import SingletonMeta
|
||||
from colossalai.utils.memory_tracer.commons import col_tensor_mem_usage
|
||||
from colossalai.zero.sharded_param.sharded_tensor import ShardedTensor
|
||||
import torch
|
||||
from typing import Union
|
||||
|
||||
|
||||
def _col_tensor_mem_usage(t: Union[torch.Tensor, ShardedTensor]) -> int:
|
||||
if isinstance(t, ShardedTensor):
|
||||
target = t.payload
|
||||
else:
|
||||
target = t
|
||||
return target.numel() * target.element_size()
|
||||
|
||||
|
||||
class ModelDataTracer(metaclass=SingletonMeta):
|
||||
@ -16,12 +25,12 @@ class ModelDataTracer(metaclass=SingletonMeta):
|
||||
|
||||
def add_tensor(self, t: torch.Tensor):
|
||||
assert isinstance(t, torch.Tensor), f"ModelDataTracer add_tensor() should accept a torch.Tensor"
|
||||
mem_use = col_tensor_mem_usage(t)
|
||||
mem_use = _col_tensor_mem_usage(t)
|
||||
self._cuda_usage += mem_use
|
||||
|
||||
def delete_tensor(self, t: torch.Tensor):
|
||||
assert isinstance(t, torch.Tensor), f"ModelDataTracer delete_tensor() should accept a torch.Tensor"
|
||||
mem_use = col_tensor_mem_usage(t)
|
||||
mem_use = _col_tensor_mem_usage(t)
|
||||
self._cuda_usage -= mem_use
|
||||
|
||||
@property
|
||||
|
0
colossalai/utils/memory_utils/__init__.py
Normal file
0
colossalai/utils/memory_utils/__init__.py
Normal file
@ -63,5 +63,5 @@ def report_memory_usage(message, logger=None, report_cpu=False):
|
||||
logger.info(full_log)
|
||||
|
||||
# get the peak memory to report correct data, so reset the counter for the next call
|
||||
if hasattr(torch.cuda, "reset_peak_memory_stats"): # pytorch 1.4+
|
||||
if hasattr(torch.cuda, "reset_peak_memory_stats"): # pytorch 1.4+
|
||||
torch.cuda.reset_peak_memory_stats()
|
59
colossalai/utils/memory_utils/utils.py
Normal file
59
colossalai/utils/memory_utils/utils.py
Normal file
@ -0,0 +1,59 @@
|
||||
import torch
|
||||
from colossalai.utils import get_current_device
|
||||
from colossalai.zero.sharded_param.sharded_tensor import ShardedTensor
|
||||
from colossalai.utils.memory_tracer.model_data_memtracer import GLOBAL_MODEL_DATA_TRACER
|
||||
|
||||
from typing import Union
|
||||
|
||||
|
||||
def colo_cuda_memory_capacity():
|
||||
"""
|
||||
Get cuda memory capacity of the current cuda.
|
||||
"""
|
||||
return torch.cuda.get_device_properties(get_current_device()).total_memory
|
||||
|
||||
|
||||
def colo_model_data_tensor_move(src_t: Union[ShardedTensor, torch.Tensor], tgt_t: Union[ShardedTensor,
|
||||
torch.Tensor]) -> None:
|
||||
"""
|
||||
A colossal API for model data tensor move.
|
||||
The src and target tensors could be resident on both CPU and GPU.
|
||||
|
||||
NOTE() The source tensor payload will be removed after this function.
|
||||
|
||||
The function will record the communication volume between CPU and GPU.
|
||||
Args:
|
||||
t_src (Union[ShardedTensor, torch.Tensor]): source tensor
|
||||
tgt_t (Union[ShardedTensor, torch.Tensor]): target tensor
|
||||
"""
|
||||
if isinstance(src_t, ShardedTensor):
|
||||
src_t_payload = src_t.payload
|
||||
else:
|
||||
src_t_payload = src_t.data
|
||||
src_dev = src_t_payload.device
|
||||
if isinstance(tgt_t, ShardedTensor):
|
||||
tgt_t_payload = tgt_t.payload
|
||||
else:
|
||||
tgt_t_payload = tgt_t.data
|
||||
tgt_dev = tgt_t_payload.device
|
||||
|
||||
if src_dev.type == 'cuda' and tgt_dev.type == 'cpu':
|
||||
GLOBAL_MODEL_DATA_TRACER.delete_tensor(src_t_payload)
|
||||
elif src_dev.type == 'cpu' and tgt_dev.type == 'cuda':
|
||||
GLOBAL_MODEL_DATA_TRACER.add_tensor(tgt_t_payload)
|
||||
tgt_t_payload.copy_(src_t_payload)
|
||||
|
||||
# remove payload of src_t
|
||||
if isinstance(src_t, ShardedTensor):
|
||||
src_t.reset_payload(torch.tensor([], device=src_dev, dtype=src_t_payload.dtype))
|
||||
else:
|
||||
src_t.data = torch.tensor([], device=src_dev, dtype=src_t_payload.dtype)
|
||||
|
||||
|
||||
def colo_model_data_move_to_cpu(t: torch.Tensor):
|
||||
assert isinstance(t, torch.Tensor)
|
||||
if t.device.type == 'cpu':
|
||||
return
|
||||
|
||||
GLOBAL_MODEL_DATA_TRACER.delete_tensor(t)
|
||||
t.data = t.data.cpu()
|
@ -11,8 +11,7 @@ from colossalai.engine.ophooks import register_ophooks_recursively
|
||||
from colossalai.engine.ophooks.zero_hook import ZeroHook
|
||||
from colossalai.engine.paramhooks import BaseParamHookMgr
|
||||
from colossalai.logging import get_dist_logger
|
||||
from colossalai.utils.commons.memory import col_cuda_memory_capacity
|
||||
from colossalai.utils.memory_tracer.allocator import col_move_to_cpu
|
||||
from colossalai.utils.memory_utils.utils import colo_model_data_move_to_cpu, colo_cuda_memory_capacity
|
||||
from colossalai.utils.memory_tracer.memstats_collector import MemStatsCollector
|
||||
from colossalai.zero.shard_utils import BaseShardStrategy
|
||||
from colossalai.zero.sharded_model.reduce_scatter import ReduceScatterBucketer
|
||||
@ -152,7 +151,7 @@ class ShardedModelV2(nn.Module):
|
||||
# the way to calculate margin space is based on the assumption that
|
||||
# model data is fixed in cuda during training.
|
||||
# cuda margin space can be used to store OS.
|
||||
self._cuda_margin_space = col_cuda_memory_capacity() - max(self._memstats_collector._overall_cuda)
|
||||
self._cuda_margin_space = colo_cuda_memory_capacity() - max(self._memstats_collector._overall_cuda)
|
||||
|
||||
self._iter_cnter += 1
|
||||
|
||||
@ -201,7 +200,7 @@ class ShardedModelV2(nn.Module):
|
||||
else:
|
||||
grad = cast_tensor_to_fp32(p.col_attr.fp16_grad)
|
||||
if p.col_attr.offload_grad:
|
||||
col_move_to_cpu(grad)
|
||||
colo_model_data_move_to_cpu(grad)
|
||||
if p.col_attr.fp32_grad is not None:
|
||||
assert not self.reuse_fp16_shard, 'Gradien accumulation is not supported when reuse_fp16_shard=True'
|
||||
p.col_attr.fp32_grad.add_(grad.view_as(p.col_attr.fp32_grad))
|
||||
|
@ -25,8 +25,18 @@ class OptimState(Enum):
|
||||
|
||||
|
||||
class ShardedOptimizerV2(ColossalaiOptimizer):
|
||||
"""A wrapper for optimizer. `ShardedOptimizerV2` and `ShardedModelV2` implement Zero Redundancy Optimizer (ZeRO) stage 3.
|
||||
You must use `ShardedOptimizerV2` with `ShardedModelV2`.
|
||||
"""A wrapper for optimizer. `ShardedOptimizerV2` and `ShardedModelV2` implement Zero Redundancy Optimizer (ZeRO).
|
||||
By default the ZeRO optimizer stage 3 offload Optimizer States on CPU.
|
||||
We apply the Device-aware Operator Placement technique for OS placement from the following paper.
|
||||
PatrickStar: Parallel Training of Pre-trained Models via Chunk-based Memory Management
|
||||
https://arxiv.org/abs/2108.05818
|
||||
GPU margin space is the remaining space after removing peak non-model data from the overall GPU memory,
|
||||
which is detected by a runtime memory tracer.
|
||||
We place as many OS chunks in the margin space as possible.
|
||||
The size of margin space can be controlled by `gpu_margin_mem_ratio`
|
||||
If it is set as 0.0, it is the same as classical ZeRO optimizer.
|
||||
|
||||
NOTE() You must use `ShardedOptimizerV2` with `ShardedModelV2`.
|
||||
|
||||
Args:
|
||||
sharded_model (ShardedModelV2): A sharded model initialized by class ShardedModelV2. The optimizer will use the
|
||||
|
49
tests/test_utils/test_commons.py
Normal file
49
tests/test_utils/test_commons.py
Normal file
@ -0,0 +1,49 @@
|
||||
from colossalai.utils.memory_tracer.model_data_memtracer import GLOBAL_MODEL_DATA_TRACER
|
||||
from colossalai.utils.memory_utils.utils import colo_model_data_tensor_move
|
||||
from colossalai.utils import free_port
|
||||
|
||||
from colossalai.zero.sharded_param import ShardedTensor
|
||||
import colossalai
|
||||
|
||||
import torch
|
||||
|
||||
from functools import partial
|
||||
import torch.multiprocessing as mp
|
||||
import pytest
|
||||
|
||||
|
||||
def run_tensor_move(rank):
|
||||
colossalai.launch(config={}, rank=0, world_size=1, host='localhost', port=free_port(), backend='nccl')
|
||||
|
||||
assert (GLOBAL_MODEL_DATA_TRACER.cuda_usage == 0)
|
||||
|
||||
src_t = torch.ones(2, 3).cuda()
|
||||
GLOBAL_MODEL_DATA_TRACER.add_tensor(src_t)
|
||||
assert (GLOBAL_MODEL_DATA_TRACER.cuda_usage == 24)
|
||||
tgt_t = torch.zeros(2, 3)
|
||||
|
||||
colo_model_data_tensor_move(src_t, tgt_t)
|
||||
assert (GLOBAL_MODEL_DATA_TRACER.cuda_usage == 0)
|
||||
assert (torch.sum(tgt_t) == 6.0), f"{torch.sum(tgt_t.payload)} vs. 6.0"
|
||||
|
||||
src_t = torch.ones(2, 3)
|
||||
tgt_t = torch.zeros(2, 3).cuda().half()
|
||||
colo_model_data_tensor_move(src_t, tgt_t)
|
||||
assert (GLOBAL_MODEL_DATA_TRACER.cuda_usage == 12), f"cuda usage {GLOBAL_MODEL_DATA_TRACER.cuda_usage}"
|
||||
# the src_t has been removed
|
||||
assert (src_t.numel() == 0)
|
||||
assert (torch.sum(tgt_t) == 6.0), f"{torch.sum(tgt_t.payload)} vs. 6.0"
|
||||
|
||||
src_t = ShardedTensor(torch.ones(2, 3))
|
||||
tgt_t = ShardedTensor(torch.zeros(2, 3).cuda().half())
|
||||
colo_model_data_tensor_move(src_t, tgt_t)
|
||||
assert (GLOBAL_MODEL_DATA_TRACER.cuda_usage == 24), f"cuda usage {GLOBAL_MODEL_DATA_TRACER.cuda_usage}"
|
||||
assert (torch.sum(tgt_t.payload) == 6.0), f"{torch.sum(tgt_t.payload)} vs. 6.0"
|
||||
|
||||
|
||||
def test_tensor_move():
|
||||
mp.spawn(run_tensor_move, nprocs=1)
|
||||
|
||||
|
||||
if __name__ == '__main__':
|
||||
test_tensor_move()
|
Loading…
Reference in New Issue
Block a user