mirror of
https://github.com/hpcaitech/ColossalAI.git
synced 2025-06-21 05:04:47 +00:00
upgrade_t
This commit is contained in:
parent
46ed5d856b
commit
2223b64931
@ -17,7 +17,7 @@ from transformers.models.t5.modeling_t5 import (
|
||||
T5Model,
|
||||
T5Stack,
|
||||
)
|
||||
from transformers.utils import logging
|
||||
from transformers.utils import is_torchdynamo_compiling, logging
|
||||
|
||||
from colossalai.pipeline.stage_manager import PipelineStageManager
|
||||
|
||||
@ -43,6 +43,7 @@ class T5PipelineForwards:
|
||||
output_attentions: Optional[bool] = False,
|
||||
output_hidden_states: Optional[bool] = False,
|
||||
return_dict: Optional[bool] = None,
|
||||
cache_position=None,
|
||||
stage_manager: Optional[PipelineStageManager] = None,
|
||||
hidden_states: Optional[torch.FloatTensor] = None,
|
||||
position_bias: Optional[torch.Tensor] = None,
|
||||
@ -68,15 +69,6 @@ class T5PipelineForwards:
|
||||
if use_cache:
|
||||
logger.warning_once("use_cache=True is not supported for pipeline models at the moment.")
|
||||
use_cache = False
|
||||
if use_cache is True:
|
||||
if not in_decoder:
|
||||
raise ValueError(f"`use_cache` can only be set to `True` if {self} is used as a decoder")
|
||||
if self.gradient_checkpointing and self.training:
|
||||
if use_cache:
|
||||
logger.warning_once(
|
||||
"`use_cache=True` is incompatible with gradient checkpointing. Setting `use_cache=False`..."
|
||||
)
|
||||
use_cache = False
|
||||
|
||||
stage = stage_manager.stage
|
||||
in_decoder = self.is_decoder
|
||||
@ -121,19 +113,30 @@ class T5PipelineForwards:
|
||||
batch_size, seq_length = input_shape[0], input_shape[1]
|
||||
device = hidden_states.device
|
||||
|
||||
# required mask seq length can be calculated via length of past
|
||||
mask_seq_length = past_key_values[0][0].shape[2] + seq_length if past_key_values is not None else seq_length
|
||||
# v4.51.3 transformers past_key_values_length calculation
|
||||
past_key_values_length = past_key_values.get_seq_length() if past_key_values is not None else 0
|
||||
if cache_position is None:
|
||||
cache_position = torch.arange(past_key_values_length, past_key_values_length + seq_length, device=device)
|
||||
|
||||
# initialize past_key_values with `None` if past does not exist
|
||||
if past_key_values is None:
|
||||
past_key_values = [None] * len(self.block)
|
||||
|
||||
if attention_mask is None:
|
||||
if attention_mask is None and not is_torchdynamo_compiling():
|
||||
# required mask seq length can be calculated via length of past cache
|
||||
mask_seq_length = past_key_values_length + seq_length
|
||||
attention_mask = torch.ones(batch_size, mask_seq_length, device=device)
|
||||
|
||||
# We can provide a self-attention mask of dimensions [batch_size, from_seq_length, to_seq_length]
|
||||
# ourselves in which case we just need to make it broadcastable to all heads.
|
||||
extended_attention_mask = self.get_extended_attention_mask(attention_mask, input_shape)
|
||||
if self.config.is_decoder:
|
||||
causal_mask = self._update_causal_mask(
|
||||
attention_mask,
|
||||
inputs_embeds,
|
||||
cache_position,
|
||||
past_key_values.self_attention_cache if past_key_values is not None else None,
|
||||
output_attentions,
|
||||
)
|
||||
elif attention_mask is not None:
|
||||
causal_mask = attention_mask[:, None, None, :]
|
||||
causal_mask = causal_mask.to(dtype=hidden_states.dtype)
|
||||
causal_mask = (1.0 - causal_mask) * torch.finfo(hidden_states.dtype).min
|
||||
else:
|
||||
causal_mask = None
|
||||
|
||||
# If a 2D or 3D attention mask is provided for the cross-attention
|
||||
# we need to make broadcastable to [batch_size, num_heads, seq_length, seq_length]
|
||||
@ -149,16 +152,16 @@ class T5PipelineForwards:
|
||||
# Prepare head mask if needed
|
||||
head_mask = self.get_head_mask(head_mask, self.config.num_layers)
|
||||
cross_attn_head_mask = self.get_head_mask(cross_attn_head_mask, self.config.num_layers)
|
||||
present_key_value_states = () if use_cache else None
|
||||
all_hidden_states = () if output_hidden_states else None
|
||||
all_attentions = () if output_attentions else None
|
||||
all_cross_attentions = () if (output_attentions and self.is_decoder) else None
|
||||
position_bias = None
|
||||
encoder_decoder_position_bias = None
|
||||
|
||||
# Going through held blocks.
|
||||
start_idx, end_idx = stage_index[0], stage_index[1]
|
||||
|
||||
for i in range(start_idx, end_idx):
|
||||
past_key_value = past_key_values[i]
|
||||
layer_module = self.block[i]
|
||||
layer_head_mask = head_mask[i]
|
||||
cross_attn_layer_head_mask = cross_attn_head_mask[i]
|
||||
@ -168,7 +171,7 @@ class T5PipelineForwards:
|
||||
layer_outputs = self._gradient_checkpointing_func(
|
||||
layer_module.forward,
|
||||
hidden_states,
|
||||
extended_attention_mask,
|
||||
causal_mask,
|
||||
position_bias,
|
||||
encoder_hidden_states,
|
||||
encoder_extended_attention_mask,
|
||||
@ -178,20 +181,24 @@ class T5PipelineForwards:
|
||||
None, # past_key_value is always None with gradient checkpointing
|
||||
use_cache,
|
||||
output_attentions,
|
||||
return_dict,
|
||||
cache_position,
|
||||
)
|
||||
else:
|
||||
layer_outputs = layer_module(
|
||||
hidden_states,
|
||||
attention_mask=extended_attention_mask,
|
||||
attention_mask=causal_mask,
|
||||
position_bias=position_bias,
|
||||
encoder_hidden_states=encoder_hidden_states,
|
||||
encoder_attention_mask=encoder_extended_attention_mask,
|
||||
encoder_decoder_position_bias=encoder_decoder_position_bias,
|
||||
layer_head_mask=layer_head_mask,
|
||||
cross_attn_layer_head_mask=cross_attn_layer_head_mask,
|
||||
past_key_value=past_key_value,
|
||||
past_key_value=past_key_values,
|
||||
use_cache=use_cache,
|
||||
output_attentions=output_attentions,
|
||||
return_dict=return_dict,
|
||||
cache_position=cache_position,
|
||||
)
|
||||
|
||||
# layer_outputs is a tuple with:
|
||||
@ -199,30 +206,31 @@ class T5PipelineForwards:
|
||||
|
||||
if use_cache is False or use_cache is None:
|
||||
layer_outputs = layer_outputs[:1] + (None,) + layer_outputs[1:]
|
||||
hidden_states, present_key_value_state = layer_outputs[:2]
|
||||
hidden_states, next_decoder_cache = layer_outputs[:2]
|
||||
|
||||
# We share the position biases between the layers - the first layer store them
|
||||
# layer_outputs = hidden-states, key-value-states (self-attention position bias), (self-attention weights),
|
||||
# (cross-attention position bias), (cross-attention weights)
|
||||
position_bias = layer_outputs[2]
|
||||
|
||||
if in_decoder and encoder_hidden_states is not None:
|
||||
if self.is_decoder and encoder_hidden_states is not None:
|
||||
encoder_decoder_position_bias = layer_outputs[4 if output_attentions else 3]
|
||||
# append next layer key value states
|
||||
if use_cache:
|
||||
present_key_value_states = present_key_value_states + (present_key_value_state,)
|
||||
|
||||
if output_attentions:
|
||||
all_attentions = all_attentions + (layer_outputs[3],)
|
||||
if self.is_decoder:
|
||||
all_cross_attentions = all_cross_attentions + (layer_outputs[5],)
|
||||
|
||||
# last layer
|
||||
if at_last_stage:
|
||||
hidden_states = self.final_layer_norm(hidden_states)
|
||||
hidden_states = self.dropout(hidden_states)
|
||||
|
||||
next_cache = None
|
||||
if not return_dict:
|
||||
return tuple(
|
||||
v
|
||||
for v in [
|
||||
hidden_states,
|
||||
present_key_value_states,
|
||||
next_cache,
|
||||
all_hidden_states,
|
||||
all_attentions,
|
||||
all_cross_attentions,
|
||||
@ -231,7 +239,7 @@ class T5PipelineForwards:
|
||||
)
|
||||
return BaseModelOutputWithPastAndCrossAttentions(
|
||||
last_hidden_state=hidden_states,
|
||||
past_key_values=present_key_value_states,
|
||||
past_key_values=next_cache,
|
||||
hidden_states=all_hidden_states,
|
||||
attentions=all_attentions,
|
||||
cross_attentions=all_cross_attentions,
|
||||
@ -805,6 +813,7 @@ def get_T5_layer_self_attention_forward():
|
||||
past_key_value: Optional[Tuple[torch.Tensor]] = None,
|
||||
use_cache: bool = False,
|
||||
output_attentions: bool = False,
|
||||
cache_position=None,
|
||||
) -> Tuple[torch.Tensor, Optional[torch.Tensor], Optional[torch.Tensor]]:
|
||||
normed_hidden_states = self.layer_norm(hidden_states)
|
||||
attention_output = self.SelfAttention(
|
||||
@ -815,6 +824,7 @@ def get_T5_layer_self_attention_forward():
|
||||
past_key_value=past_key_value,
|
||||
use_cache=use_cache,
|
||||
output_attentions=output_attentions,
|
||||
cache_position=cache_position,
|
||||
)
|
||||
hidden_states = self.dropout_add(attention_output[0], hidden_states, self.dropout.p, self.dropout.training)
|
||||
outputs = (hidden_states,) + attention_output[1:] # add attentions if we output them
|
||||
|
Loading…
Reference in New Issue
Block a user