mirror of
https://github.com/hpcaitech/ColossalAI.git
synced 2025-09-16 06:30:41 +00:00
[gemini] improve compatibility and add static placement policy (#4479)
* [gemini] remove distributed-related part from colotensor (#4379) * [gemini] remove process group dependency * [gemini] remove tp part from colo tensor * [gemini] patch inplace op * [gemini] fix param op hook and update tests * [test] remove useless tests * [test] remove useless tests * [misc] fix requirements * [test] fix model zoo * [test] fix model zoo * [test] fix model zoo * [test] fix model zoo * [test] fix model zoo * [misc] update requirements * [gemini] refactor gemini optimizer and gemini ddp (#4398) * [gemini] update optimizer interface * [gemini] renaming gemini optimizer * [gemini] refactor gemini ddp class * [example] update gemini related example * [example] update gemini related example * [plugin] fix gemini plugin args * [test] update gemini ckpt tests * [gemini] fix checkpoint io * [example] fix opt example requirements * [example] fix opt example * [example] fix opt example * [example] fix opt example * [gemini] add static placement policy (#4443) * [gemini] add static placement policy * [gemini] fix param offload * [test] update gemini tests * [plugin] update gemini plugin * [plugin] update gemini plugin docstr * [misc] fix flash attn requirement * [test] fix gemini checkpoint io test * [example] update resnet example result (#4457) * [example] update bert example result (#4458) * [doc] update gemini doc (#4468) * [example] update gemini related examples (#4473) * [example] update gpt example * [example] update dreambooth example * [example] update vit * [example] update opt * [example] update palm * [example] update vit and opt benchmark * [hotfix] fix bert in model zoo (#4480) * [hotfix] fix bert in model zoo * [test] remove chatglm gemini test * [test] remove sam gemini test * [test] remove vit gemini test * [hotfix] fix opt tutorial example (#4497) * [hotfix] fix opt tutorial example * [hotfix] fix opt tutorial example
This commit is contained in:
@@ -1,23 +1,40 @@
|
||||
import pytest
|
||||
import torch
|
||||
import torch.distributed as dist
|
||||
from torch.nn.parallel import DistributedDataParallel as DDP
|
||||
from torch.testing import assert_close
|
||||
|
||||
import colossalai
|
||||
from colossalai.amp import convert_to_apex_amp
|
||||
from colossalai.nn.optimizer import HybridAdam
|
||||
from colossalai.tensor import ProcessGroup
|
||||
from colossalai.testing import parameterize, rerun_if_address_is_in_use, spawn
|
||||
from colossalai.utils.cuda import get_current_device
|
||||
from colossalai.zero import ColoInitContext, ZeroDDP, ZeroOptimizer
|
||||
from colossalai.zero.gemini.chunk import ChunkManager, search_chunk_configuration
|
||||
from colossalai.zero.gemini.gemini_mgr import GeminiManager
|
||||
from tests.components_to_test import run_fwd, run_fwd_bwd
|
||||
from colossalai.zero import GeminiDDP, GeminiOptimizer
|
||||
from colossalai.zero.gemini.chunk import search_chunk_configuration
|
||||
from tests.components_to_test import run_fwd_bwd
|
||||
from tests.components_to_test.registry import non_distributed_component_funcs
|
||||
from tests.test_tensor.common_utils import set_seed
|
||||
|
||||
PLACEMENT_CONFIGS = [
|
||||
{
|
||||
'placement_policy': 'static',
|
||||
'shard_param_frac': 0.0
|
||||
}, # zero2
|
||||
{
|
||||
'placement_policy': 'static',
|
||||
'shard_param_frac': 1.0
|
||||
}, # zero3
|
||||
{
|
||||
'placement_policy': 'static',
|
||||
'shard_param_frac': 0.5
|
||||
}, # zero3-half
|
||||
{
|
||||
'placement_policy': 'auto'
|
||||
}
|
||||
]
|
||||
|
||||
def check_grad(model: ZeroDDP, torch_model: torch.nn.Module):
|
||||
|
||||
def check_grad(model: GeminiDDP, torch_model: torch.nn.Module):
|
||||
chunk_manager = model.chunk_manager
|
||||
param_list = [p for p in model.parameters()]
|
||||
chunk_list = chunk_manager.get_chunks(param_list)
|
||||
@@ -28,12 +45,12 @@ def check_grad(model: ZeroDDP, torch_model: torch.nn.Module):
|
||||
assert_close(p0, p1.grad, rtol=1e-3, atol=5e-5)
|
||||
|
||||
|
||||
@parameterize('placement_policy', ['cuda', 'cpu', 'auto', 'const'])
|
||||
@parameterize('placement_config', PLACEMENT_CONFIGS)
|
||||
@parameterize('keep_gather', [False, True])
|
||||
@parameterize('model_name', ['gpt2', 'bert', 'albert'])
|
||||
@parameterize('use_grad_checkpoint', [False, True])
|
||||
def exam_gpt_fwd_bwd(
|
||||
placement_policy,
|
||||
placement_config,
|
||||
keep_gather,
|
||||
model_name: str,
|
||||
use_grad_checkpoint: bool = False,
|
||||
@@ -43,8 +60,7 @@ def exam_gpt_fwd_bwd(
|
||||
model_builder, train_dataloader, test_dataloader, optimizer_class, criterion = get_components_func()
|
||||
|
||||
set_seed(42)
|
||||
with ColoInitContext(device=init_device):
|
||||
model = model_builder(use_grad_checkpoint)
|
||||
model = model_builder(use_grad_checkpoint)
|
||||
|
||||
set_seed(42)
|
||||
torch_model = model_builder(use_grad_checkpoint).cuda()
|
||||
@@ -55,19 +71,17 @@ def exam_gpt_fwd_bwd(
|
||||
config_dict, *_ = search_chunk_configuration(model, search_range_m=1, search_interval=100)
|
||||
config_dict[world_size]['chunk_size'] = 5000
|
||||
config_dict[world_size]['keep_gathered'] = keep_gather
|
||||
chunk_manager = ChunkManager(config_dict)
|
||||
gemini_manager = GeminiManager(placement_policy, chunk_manager)
|
||||
model = ZeroDDP(model, gemini_manager, pin_memory=True)
|
||||
model = GeminiDDP(model, config_dict, init_device, pin_memory=True, **placement_config)
|
||||
optimizer = HybridAdam(model.parameters(), lr=1e-3)
|
||||
zero_optim = ZeroOptimizer(optimizer, model, initial_scale=1)
|
||||
zero_optim = GeminiOptimizer(optimizer, model, initial_scale=1)
|
||||
|
||||
pg = ProcessGroup()
|
||||
rank = dist.get_rank()
|
||||
amp_config = dict(opt_level='O2', keep_batchnorm_fp32=False, loss_scale=1)
|
||||
torch_optim = torch.optim.Adam(torch_model.parameters(), lr=1e-3)
|
||||
torch_model, torch_optim = convert_to_apex_amp(torch_model, torch_optim, amp_config)
|
||||
torch_model = DDP(torch_model, device_ids=[pg.rank()], process_group=pg.dp_process_group())
|
||||
torch_model = DDP(torch_model, device_ids=[rank])
|
||||
|
||||
set_seed(pg.dp_local_rank())
|
||||
set_seed(rank)
|
||||
for i, (input_ids, label) in enumerate(train_dataloader):
|
||||
# you can only test a single fwd + bwd.
|
||||
# after bwd param is grad for Gemini, due to the chunk reuse optimization.
|
||||
@@ -89,65 +103,10 @@ def exam_gpt_fwd_bwd(
|
||||
check_grad(model, torch_model)
|
||||
|
||||
|
||||
@parameterize('placement_policy', ['cuda', 'cpu'])
|
||||
@parameterize('keep_gather', [False, True])
|
||||
@parameterize('model_name', ['gpt2', 'bert', 'albert'])
|
||||
@parameterize('scatter_after_inference', [False, True])
|
||||
def exam_gpt_inference(
|
||||
placement_policy,
|
||||
keep_gather,
|
||||
model_name: str,
|
||||
scatter_after_inference: bool = False,
|
||||
):
|
||||
init_device = get_current_device()
|
||||
get_components_func = non_distributed_component_funcs.get_callable(model_name)
|
||||
model_builder, train_dataloader, test_dataloader, optimizer_class, criterion = get_components_func()
|
||||
|
||||
set_seed(42)
|
||||
with ColoInitContext(device=init_device):
|
||||
model = model_builder()
|
||||
|
||||
set_seed(42)
|
||||
torch_model = model_builder().cuda()
|
||||
for torch_p, p in zip(torch_model.parameters(), model.parameters()):
|
||||
torch_p.data.copy_(p.data)
|
||||
|
||||
world_size = torch.distributed.get_world_size()
|
||||
config_dict, *_ = search_chunk_configuration(model, search_range_m=1, search_interval=100)
|
||||
config_dict[world_size]['chunk_size'] = 5000
|
||||
config_dict[world_size]['keep_gathered'] = keep_gather
|
||||
chunk_manager = ChunkManager(config_dict)
|
||||
gemini_manager = GeminiManager(placement_policy, chunk_manager)
|
||||
model = ZeroDDP(model, gemini_manager, pin_memory=True, scatter_after_inference=scatter_after_inference)
|
||||
|
||||
pg = ProcessGroup()
|
||||
amp_config = dict(opt_level='O2', keep_batchnorm_fp32=False, loss_scale=1)
|
||||
torch_optim = torch.optim.Adam(torch_model.parameters(), lr=1e-3)
|
||||
torch_model, torch_optim = convert_to_apex_amp(torch_model, torch_optim, amp_config)
|
||||
torch_model = DDP(torch_model, device_ids=[pg.rank()], process_group=pg.dp_process_group())
|
||||
|
||||
set_seed(pg.dp_local_rank())
|
||||
model.eval()
|
||||
torch_model.eval()
|
||||
for i, (input_ids, label) in enumerate(train_dataloader):
|
||||
# you can only test a single fwd + bwd.
|
||||
# after bwd param is grad for Gemini, due to the chunk reuse optimization.
|
||||
if i > 0:
|
||||
break
|
||||
with torch.no_grad():
|
||||
input_ids, label = input_ids.cuda(), label.cuda()
|
||||
|
||||
torch_loss = run_fwd(torch_model, input_ids, label, criterion)
|
||||
loss = run_fwd(model, input_ids, label, criterion)
|
||||
|
||||
assert torch.equal(torch_loss, loss)
|
||||
|
||||
|
||||
def run_dist(rank, world_size, port):
|
||||
config = {}
|
||||
colossalai.launch(config=config, rank=rank, world_size=world_size, host='localhost', port=port, backend='nccl')
|
||||
exam_gpt_fwd_bwd()
|
||||
exam_gpt_inference()
|
||||
|
||||
|
||||
@pytest.mark.dist
|
||||
|
Reference in New Issue
Block a user