[gemini] improve compatibility and add static placement policy (#4479)

* [gemini] remove distributed-related part from colotensor (#4379)

* [gemini] remove process group dependency

* [gemini] remove tp part from colo tensor

* [gemini] patch inplace op

* [gemini] fix param op hook and update tests

* [test] remove useless tests

* [test] remove useless tests

* [misc] fix requirements

* [test] fix model zoo

* [test] fix model zoo

* [test] fix model zoo

* [test] fix model zoo

* [test] fix model zoo

* [misc] update requirements

* [gemini] refactor gemini optimizer and gemini ddp (#4398)

* [gemini] update optimizer interface

* [gemini] renaming gemini optimizer

* [gemini] refactor gemini ddp class

* [example] update gemini related example

* [example] update gemini related example

* [plugin] fix gemini plugin args

* [test] update gemini ckpt tests

* [gemini] fix checkpoint io

* [example] fix opt example requirements

* [example] fix opt example

* [example] fix opt example

* [example] fix opt example

* [gemini] add static placement policy (#4443)

* [gemini] add static placement policy

* [gemini] fix param offload

* [test] update gemini tests

* [plugin] update gemini plugin

* [plugin] update gemini plugin docstr

* [misc] fix flash attn requirement

* [test] fix gemini checkpoint io test

* [example] update resnet example result (#4457)

* [example] update bert example result (#4458)

* [doc] update gemini doc (#4468)

* [example] update gemini related examples (#4473)

* [example] update gpt example

* [example] update dreambooth example

* [example] update vit

* [example] update opt

* [example] update palm

* [example] update vit and opt benchmark

* [hotfix] fix bert in model zoo (#4480)

* [hotfix] fix bert in model zoo

* [test] remove chatglm gemini test

* [test] remove sam gemini test

* [test] remove vit gemini test

* [hotfix] fix opt tutorial example (#4497)

* [hotfix] fix opt tutorial example

* [hotfix] fix opt tutorial example
This commit is contained in:
Hongxin Liu
2023-08-24 09:29:25 +08:00
committed by GitHub
parent 285fe7ba71
commit 27061426f7
82 changed files with 1008 additions and 4036 deletions

View File

@@ -2,33 +2,20 @@ import pytest
import torch
import colossalai
from colossalai.tensor import ComputePattern, ComputeSpec, ProcessGroup, ShardSpec
from colossalai.testing import rerun_if_address_is_in_use, spawn
from colossalai.utils import get_current_device
from colossalai.zero import ColoInitContext
from colossalai.zero.gemini.chunk import init_chunk_manager, search_chunk_configuration
from tests.components_to_test.registry import non_distributed_component_funcs
def init_1d_row_spec(model, pg: ProcessGroup):
tensor_spec = (ShardSpec([0], [pg.tp_world_size()]), ComputeSpec(ComputePattern.TP1D))
for n, p in model.named_parameters():
if 'weight' in n and 'ln' not in n:
p.set_process_group(pg)
p.set_tensor_spec(*tensor_spec)
def exam_search_chunk_size():
world_size = torch.distributed.get_world_size()
pg_tp = ProcessGroup(tp_degree=world_size)
get_components_func = non_distributed_component_funcs.get_callable('gpt2')
model_builder, train_dataloader, test_dataloader, optimizer_class, criterion = get_components_func()
# make sure torch_model and model has the same parameter values
with ColoInitContext(device=get_current_device()):
model = model_builder()
init_1d_row_spec(model, pg_tp)
model = model_builder()
config_dict, *_ = search_chunk_configuration(model,
search_range_m=1,
search_interval=16,
@@ -37,57 +24,19 @@ def exam_search_chunk_size():
for key in config_dict:
chunk_size = config_dict[key]['chunk_size']
if world_size == 1:
if world_size == 1 or True:
assert chunk_size == 31616
else:
assert chunk_size == 1024
def exam_search_strict_ddp():
world_size = torch.distributed.get_world_size()
default_shard_pg = ProcessGroup(tp_degree=world_size)
default_shard_spec = ShardSpec([-1], [world_size])
get_components_func = non_distributed_component_funcs.get_callable('gpt2')
model_builder, train_dataloader, test_dataloader, optimizer_class, criterion = get_components_func()
# get the chunk configuration over replicated models
with ColoInitContext(device=get_current_device()):
ddp_model = model_builder()
re_dict, re_total, re_wasted = search_chunk_configuration(ddp_model,
search_range_m=1,
search_interval=16,
min_chunk_size_m=0,
filter_exlarge_params=True,
strict_ddp_flag=False)
# get the chunk configuration over sharded ddp models
with ColoInitContext(device=get_current_device(), default_pg=default_shard_pg,
default_dist_spec=default_shard_spec):
sharded_ddp_model = model_builder()
sh_dict, sh_total, sh_wasted = search_chunk_configuration(sharded_ddp_model,
search_range_m=1,
search_interval=16,
min_chunk_size_m=0,
filter_exlarge_params=True,
strict_ddp_flag=True)
assert re_dict == sh_dict
for key in re_dict:
assert re_dict[key] == sh_dict[key]
assert re_total == sh_total
assert re_wasted == sh_wasted
def exam_chunk_manager():
world_size = torch.distributed.get_world_size()
default_shard_pg = ProcessGroup(tp_degree=world_size)
default_shard_spec = ShardSpec([-1], [world_size])
get_components_func = non_distributed_component_funcs.get_callable('gpt2')
model_builder, train_dataloader, test_dataloader, optimizer_class, criterion = get_components_func()
with ColoInitContext(device=get_current_device(), default_pg=default_shard_pg,
default_dist_spec=default_shard_spec):
sharded_ddp_model = model_builder()
sharded_ddp_model = model_builder()
chunk_manager = init_chunk_manager(sharded_ddp_model,
get_current_device(),
hidden_dim=16,
@@ -103,7 +52,6 @@ def exam_chunk_manager():
def run_dist(rank, world_size, port):
colossalai.launch(config={}, rank=rank, world_size=world_size, host='localhost', port=port, backend='nccl')
exam_search_chunk_size()
exam_search_strict_ddp()
exam_chunk_manager()