mirror of
https://github.com/hpcaitech/ColossalAI.git
synced 2025-09-17 07:00:37 +00:00
[gemini] improve compatibility and add static placement policy (#4479)
* [gemini] remove distributed-related part from colotensor (#4379) * [gemini] remove process group dependency * [gemini] remove tp part from colo tensor * [gemini] patch inplace op * [gemini] fix param op hook and update tests * [test] remove useless tests * [test] remove useless tests * [misc] fix requirements * [test] fix model zoo * [test] fix model zoo * [test] fix model zoo * [test] fix model zoo * [test] fix model zoo * [misc] update requirements * [gemini] refactor gemini optimizer and gemini ddp (#4398) * [gemini] update optimizer interface * [gemini] renaming gemini optimizer * [gemini] refactor gemini ddp class * [example] update gemini related example * [example] update gemini related example * [plugin] fix gemini plugin args * [test] update gemini ckpt tests * [gemini] fix checkpoint io * [example] fix opt example requirements * [example] fix opt example * [example] fix opt example * [example] fix opt example * [gemini] add static placement policy (#4443) * [gemini] add static placement policy * [gemini] fix param offload * [test] update gemini tests * [plugin] update gemini plugin * [plugin] update gemini plugin docstr * [misc] fix flash attn requirement * [test] fix gemini checkpoint io test * [example] update resnet example result (#4457) * [example] update bert example result (#4458) * [doc] update gemini doc (#4468) * [example] update gemini related examples (#4473) * [example] update gpt example * [example] update dreambooth example * [example] update vit * [example] update opt * [example] update palm * [example] update vit and opt benchmark * [hotfix] fix bert in model zoo (#4480) * [hotfix] fix bert in model zoo * [test] remove chatglm gemini test * [test] remove sam gemini test * [test] remove vit gemini test * [hotfix] fix opt tutorial example (#4497) * [hotfix] fix opt tutorial example * [hotfix] fix opt tutorial example
This commit is contained in:
@@ -4,31 +4,46 @@ from torch.testing import assert_close
|
||||
|
||||
import colossalai
|
||||
from colossalai.testing import parameterize, rerun_if_address_is_in_use, spawn
|
||||
from colossalai.utils.cuda import get_current_device
|
||||
from colossalai.zero import ColoInitContext, ZeroDDP
|
||||
from colossalai.zero.gemini.chunk import ChunkManager, search_chunk_configuration
|
||||
from colossalai.zero.gemini.gemini_mgr import GeminiManager
|
||||
from colossalai.zero import GeminiDDP
|
||||
from colossalai.zero.gemini.chunk import search_chunk_configuration
|
||||
from tests.components_to_test.registry import non_distributed_component_funcs
|
||||
from tests.test_tensor.common_utils import debug_print, set_seed
|
||||
from tests.test_tensor.common_utils import set_seed
|
||||
|
||||
PLACEMENT_CONFIGS = [
|
||||
{
|
||||
'placement_policy': 'static',
|
||||
'shard_param_frac': 0.0
|
||||
}, # zero2
|
||||
{
|
||||
'placement_policy': 'static',
|
||||
'shard_param_frac': 1.0
|
||||
}, # zero3
|
||||
{
|
||||
'placement_policy': 'static',
|
||||
'shard_param_frac': 0.5
|
||||
}, # zero3-half
|
||||
{
|
||||
'placement_policy': 'auto'
|
||||
}
|
||||
]
|
||||
|
||||
|
||||
def ignore_the_first_parameter(model: torch.nn.Module):
|
||||
for name, param in model.named_parameters():
|
||||
print(f"parameter `{name}` is set ignored")
|
||||
ZeroDDP.set_params_to_ignore([param])
|
||||
GeminiDDP.set_params_to_ignore([param])
|
||||
return
|
||||
|
||||
|
||||
@parameterize('placement_policy', ['cuda', 'cpu', 'auto'])
|
||||
@parameterize('placement_config', PLACEMENT_CONFIGS)
|
||||
@parameterize('keep_gathered', [True, False])
|
||||
@parameterize('model_name', ['gpt2', 'bert'])
|
||||
def exam_state_dict(placement_policy, keep_gathered, model_name: str):
|
||||
def exam_state_dict(placement_config, keep_gathered, model_name: str):
|
||||
set_seed(431)
|
||||
get_components_func = non_distributed_component_funcs.get_callable(model_name)
|
||||
model_builder, train_dataloader, test_dataloader, optimizer_class, criterion = get_components_func()
|
||||
|
||||
with ColoInitContext(device=get_current_device()):
|
||||
model = model_builder()
|
||||
model = model_builder()
|
||||
|
||||
torch_model = model_builder()
|
||||
for torch_p, p in zip(torch_model.parameters(), model.parameters()):
|
||||
@@ -38,9 +53,7 @@ def exam_state_dict(placement_policy, keep_gathered, model_name: str):
|
||||
config_dict, *_ = search_chunk_configuration(model, search_range_m=1, search_interval=100)
|
||||
config_dict[world_size]['chunk_size'] = 5000
|
||||
config_dict[world_size]['keep_gathered'] = keep_gathered
|
||||
chunk_manager = ChunkManager(config_dict)
|
||||
gemini_manager = GeminiManager(placement_policy, chunk_manager)
|
||||
model = ZeroDDP(model, gemini_manager, pin_memory=True)
|
||||
model = GeminiDDP(model, config_dict, **placement_config, pin_memory=True)
|
||||
model.train()
|
||||
|
||||
zero_dict = model.state_dict(only_rank_0=False)
|
||||
@@ -52,16 +65,15 @@ def exam_state_dict(placement_policy, keep_gathered, model_name: str):
|
||||
assert_close(value, temp_zero_value, rtol=1e-3, atol=1e-5)
|
||||
|
||||
|
||||
@parameterize('placement_policy', ['cuda', 'cpu', 'auto'])
|
||||
@parameterize('placement_config', PLACEMENT_CONFIGS)
|
||||
@parameterize('keep_gathered', [True, False])
|
||||
@parameterize('model_name', ['gpt2', 'bert'])
|
||||
def exam_load_state_dict(placement_policy, keep_gathered, model_name: str):
|
||||
def exam_load_state_dict(placement_config, keep_gathered, model_name: str):
|
||||
set_seed(431)
|
||||
get_components_func = non_distributed_component_funcs.get_callable(model_name)
|
||||
model_builder, train_dataloader, test_dataloader, optimizer_class, criterion = get_components_func()
|
||||
|
||||
with ColoInitContext(device=get_current_device()):
|
||||
model = model_builder()
|
||||
model = model_builder()
|
||||
|
||||
set_seed(451)
|
||||
torch_model = model_builder() # get a different model
|
||||
@@ -71,13 +83,7 @@ def exam_load_state_dict(placement_policy, keep_gathered, model_name: str):
|
||||
config_dict[world_size]['chunk_size'] = 5000
|
||||
config_dict[world_size]['keep_gathered'] = keep_gathered
|
||||
|
||||
if placement_policy != 'cuda':
|
||||
init_device = torch.device('cpu')
|
||||
else:
|
||||
init_device = None
|
||||
chunk_manager = ChunkManager(config_dict, init_device=init_device)
|
||||
gemini_manager = GeminiManager(placement_policy, chunk_manager)
|
||||
model = ZeroDDP(model, gemini_manager, pin_memory=True)
|
||||
model = GeminiDDP(model, config_dict, **placement_config, pin_memory=True)
|
||||
|
||||
torch_dict = torch_model.state_dict()
|
||||
model.load_state_dict(torch_dict, strict=False)
|
||||
@@ -89,11 +95,37 @@ def exam_load_state_dict(placement_policy, keep_gathered, model_name: str):
|
||||
assert_close(value, temp_zero_value, rtol=1e-3, atol=1e-5)
|
||||
|
||||
|
||||
@parameterize('placement_config', PLACEMENT_CONFIGS)
|
||||
@parameterize('model_name', ['gpt2', 'bert'])
|
||||
def exam_state_dict_shard(placement_config, model_name: str):
|
||||
get_components_func = non_distributed_component_funcs.get_callable(model_name)
|
||||
model_builder, train_dataloader, test_dataloader, optimizer_class, criterion = get_components_func()
|
||||
|
||||
model = model_builder()
|
||||
|
||||
model_size = sum(p.numel() * p.element_size() for p in model.parameters()) / 1024**2
|
||||
|
||||
config_dict, *_ = search_chunk_configuration(model, search_range_m=1, search_interval=100)
|
||||
model = GeminiDDP(model, config_dict, **placement_config)
|
||||
model.train()
|
||||
|
||||
zero_dict = model.state_dict(only_rank_0=False)
|
||||
accumulated_keys = set()
|
||||
# ensure number of shards > 1
|
||||
for shard, _ in model.state_dict_shard(max_shard_size=(model_size / 3), only_rank_0=False):
|
||||
for key, value in shard.items():
|
||||
assert key not in accumulated_keys, f"key `{key}` is duplicated."
|
||||
accumulated_keys.add(key)
|
||||
assert key in zero_dict, f"{key} not in ZeRO dictionary."
|
||||
assert torch.equal(value, zero_dict[key]), f"{key} not equal."
|
||||
|
||||
|
||||
def run_dist(rank, world_size, port):
|
||||
config = {}
|
||||
colossalai.launch(config=config, rank=rank, world_size=world_size, host='localhost', port=port, backend='nccl')
|
||||
exam_state_dict()
|
||||
exam_load_state_dict()
|
||||
exam_state_dict_shard()
|
||||
|
||||
|
||||
@pytest.mark.dist
|
||||
|
Reference in New Issue
Block a user