mirror of
https://github.com/hpcaitech/ColossalAI.git
synced 2025-06-18 19:58:17 +00:00
test pretrain loading on multi-process (#922)
This commit is contained in:
parent
c195d2814c
commit
534afb018a
@ -278,26 +278,6 @@ def test_colo_optimizer():
|
||||
if i > 5:
|
||||
break
|
||||
|
||||
def _test_pretrained():
|
||||
from _utils import check_equal
|
||||
from transformers import BertForMaskedLM
|
||||
set_seed(1)
|
||||
model_pretrained = BertForMaskedLM.from_pretrained('bert-base-uncased')
|
||||
with ColoInitContext(lazy_memory_allocate=False, device=get_current_device()):
|
||||
model = BertForMaskedLM.from_pretrained('bert-base-uncased')
|
||||
|
||||
model_pretrained = model_pretrained.cuda()
|
||||
model = model.cuda()
|
||||
|
||||
dict_pretrained = {}
|
||||
dict_col = {}
|
||||
for name, param in model_pretrained.named_parameters():
|
||||
dict_pretrained[name] = param
|
||||
for name, param in model.named_parameters():
|
||||
dict_col[name] = param
|
||||
|
||||
for name, param in dict_pretrained.items():
|
||||
check_equal(param, dict_col[name])
|
||||
|
||||
def run_1d_row_tp(model_name: str):
|
||||
# A simple net with two stacked nn.Linear
|
||||
@ -376,7 +356,29 @@ def run_1d_row_tp(model_name: str):
|
||||
break
|
||||
|
||||
|
||||
def run_dist(rank, world_size, port):
|
||||
def _run_pretrain_load():
|
||||
from _utils import check_equal
|
||||
from transformers import BertForMaskedLM
|
||||
set_seed(1)
|
||||
model_pretrained = BertForMaskedLM.from_pretrained('bert-base-uncased')
|
||||
with ColoInitContext(lazy_memory_allocate=False, device=get_current_device()):
|
||||
model = BertForMaskedLM.from_pretrained('bert-base-uncased')
|
||||
|
||||
model_pretrained = model_pretrained.cuda()
|
||||
model = model.cuda()
|
||||
|
||||
dict_pretrained = {}
|
||||
dict_col = {}
|
||||
for name, param in model_pretrained.named_parameters():
|
||||
dict_pretrained[name] = param
|
||||
for name, param in model.named_parameters():
|
||||
dict_col[name] = param
|
||||
|
||||
for name, param in dict_pretrained.items():
|
||||
check_equal(param, dict_col[name])
|
||||
|
||||
|
||||
def run_model_dist(rank, world_size, port):
|
||||
config = dict(parallel=dict(tensor=dict(mode="1d", size=world_size),))
|
||||
colossalai.launch(config=config, rank=rank, world_size=world_size, host='localhost', port=port, backend='nccl')
|
||||
for name in ['simple_net']:
|
||||
@ -390,7 +392,23 @@ def run_dist(rank, world_size, port):
|
||||
#@parameterize('world_size', [1, 4])
|
||||
@rerun_if_address_is_in_use()
|
||||
def test_model(world_size):
|
||||
run_func = partial(run_dist, world_size=world_size, port=free_port())
|
||||
run_func = partial(run_model_dist, world_size=world_size, port=free_port())
|
||||
mp.spawn(run_func, nprocs=world_size)
|
||||
|
||||
|
||||
def run_pretrain_load_dist(rank, world_size, port):
|
||||
config = dict(parallel=dict(tensor=dict(mode="1d", size=world_size),))
|
||||
colossalai.launch(config=config, rank=rank, world_size=world_size, host='localhost', port=port, backend='nccl')
|
||||
_run_pretrain_load()
|
||||
|
||||
|
||||
# The test case has to download huggingface pretrained models from the internet
|
||||
# So we manually trigger the test.
|
||||
@pytest.mark.dist
|
||||
@pytest.mark.parametrize('world_size', [1, 4])
|
||||
@rerun_if_address_is_in_use()
|
||||
def _test_pretrain_load(world_size):
|
||||
run_func = partial(run_pretrain_load_dist, world_size=world_size, port=free_port())
|
||||
mp.spawn(run_func, nprocs=world_size)
|
||||
|
||||
|
||||
@ -398,4 +416,4 @@ if __name__ == '__main__':
|
||||
# test_model_parameters()
|
||||
# test_colo_optimizer()
|
||||
# test_model()
|
||||
_test_pretrained()
|
||||
_test_pretrain_load(4)
|
||||
|
Loading…
Reference in New Issue
Block a user