mirror of
https://github.com/hpcaitech/ColossalAI.git
synced 2026-01-29 21:49:54 +00:00
Feature/zero (#279)
* add zero1 (#209) * add zero1 * add test zero1 * update zero stage 1 develop (#212) * Implement naive zero3 (#240) * naive zero3 works well * add zero3 param manager * add TODOs in comments * add gather full param ctx * fix sub module streams * add offload * fix bugs of hook and add unit tests * fix bugs of hook and add unit tests (#252) * add gather full param ctx * fix sub module streams * add offload * fix bugs of hook and add unit tests * polish code and add state dict hook * fix bug * update unit test * refactor reconstructed zero code * clip_grad support zero3 and add unit test * add unit test for Zero3ParameterManager * [WIP] initialize the shard param class * [WIP] Yet another sharded model implementation (#274) * [WIP] initialize the shard param class * [WIP] Yes another implementation of shardModel. Using a better hook method. * torch.concat -> torch.cat * fix test_zero_level_1.py::test_zero_level_1 unitest * remove deepspeed implementation and refactor for the reconstructed zero module * polish zero dp unittests Co-authored-by: ver217 <lhx0217@gmail.com> Co-authored-by: Frank Lee <somerlee.9@gmail.com>
This commit is contained in:
82
tests/test_zero_data_parallel/common.py
Normal file
82
tests/test_zero_data_parallel/common.py
Normal file
@@ -0,0 +1,82 @@
|
||||
from functools import partial
|
||||
from operator import imod
|
||||
from colossalai.utils import checkpoint
|
||||
import torch.nn as nn
|
||||
import torch
|
||||
from colossalai.logging import disable_existing_loggers, get_dist_logger
|
||||
|
||||
LOGGER = get_dist_logger()
|
||||
|
||||
CONFIG = dict(
|
||||
fp16=dict(
|
||||
mode=None,
|
||||
),
|
||||
zero=dict(
|
||||
level=3,
|
||||
verbose=False,
|
||||
offload_optimizer_config=dict(
|
||||
device='cpu',
|
||||
pin_memory=True,
|
||||
buffer_count=5,
|
||||
fast_init=False
|
||||
),
|
||||
offload_param_config=dict(
|
||||
device='cpu',
|
||||
pin_memory=True,
|
||||
buffer_count=5,
|
||||
buffer_size=1e8,
|
||||
max_in_cpu=1e9
|
||||
)
|
||||
),
|
||||
parallel=dict(
|
||||
pipeline=dict(size=1),
|
||||
tensor=dict(size=1, mode=None)
|
||||
)
|
||||
)
|
||||
|
||||
def checkpoint_wrapper(module, enable=True):
|
||||
if enable:
|
||||
module.forward = partial(checkpoint, module.forward)
|
||||
return module
|
||||
|
||||
|
||||
class Net(nn.Module):
|
||||
def __init__(self, checkpoint=False) -> None:
|
||||
super().__init__()
|
||||
self.fc1 = nn.Linear(5, 5)
|
||||
self.fc2 = nn.Linear(5, 5)
|
||||
self.fc3 = nn.Linear(5, 1)
|
||||
if checkpoint:
|
||||
self.fc1 = checkpoint_wrapper(self.fc1)
|
||||
self.layers = [
|
||||
self.fc1,
|
||||
self.fc2,
|
||||
self.fc1,
|
||||
self.fc2,
|
||||
self.fc3
|
||||
]
|
||||
|
||||
def forward(self, x):
|
||||
for layer in self.layers:
|
||||
x = layer(x)
|
||||
return x
|
||||
|
||||
def allclose(tensor_a: torch.Tensor, tensor_b: torch.Tensor, loose=False) -> bool:
|
||||
if loose:
|
||||
return torch.allclose(tensor_a, tensor_b, atol=1e-3, rtol=1e-3)
|
||||
return torch.allclose(tensor_a, tensor_b)
|
||||
|
||||
|
||||
def check_grads(model, zero_model, loose=False):
|
||||
for p, zero_p in zip(model.parameters(), zero_model.parameters()):
|
||||
zero_grad = zero_p.grad.clone().to(p.device)
|
||||
assert p.grad.dtype == zero_grad.dtype
|
||||
assert allclose(p.grad, zero_grad, loose=loose)
|
||||
LOGGER.info(torch.sum(p.grad-zero_grad))
|
||||
|
||||
def check_params(model, zero_model, loose=False):
|
||||
for p, zero_p in zip(model.parameters(), zero_model.parameters()):
|
||||
zero_p = zero_p.clone().to(p.device)
|
||||
assert p.dtype == zero_p.dtype
|
||||
assert allclose(p, zero_p, loose=loose)
|
||||
|
||||
Reference in New Issue
Block a user