mirror of
https://github.com/hpcaitech/ColossalAI.git
synced 2025-09-13 05:01:44 +00:00
[doc] add ChatGPT (#2703)
This commit is contained in:
29
README.md
29
README.md
@@ -3,7 +3,7 @@
|
||||
|
||||
[](https://www.colossalai.org/)
|
||||
|
||||
Colossal-AI: A Unified Deep Learning System for Big Model Era
|
||||
Colossal-AI: Make big AI models cheaper, easier, and scalable
|
||||
|
||||
<h3> <a href="https://arxiv.org/abs/2110.14883"> Paper </a> |
|
||||
<a href="https://www.colossalai.org/"> Documentation </a> |
|
||||
@@ -24,10 +24,10 @@
|
||||
</div>
|
||||
|
||||
## Latest News
|
||||
* [2023/02] [Open source solution replicates ChatGPT training process! Ready to go with only 1.6GB GPU memory](https://www.hpc-ai.tech/blog/colossal-ai-chatgpt)
|
||||
* [2023/01] [Hardware Savings Up to 46 Times for AIGC and Automatic Parallelism](https://www.hpc-ai.tech/blog/colossal-ai-0-2-0)
|
||||
* [2022/11] [Diffusion Pretraining and Hardware Fine-Tuning Can Be Almost 7X Cheaper](https://www.hpc-ai.tech/blog/diffusion-pretraining-and-hardware-fine-tuning-can-be-almost-7x-cheaper)
|
||||
* [2022/10] [Use a Laptop to Analyze 90% of Proteins, With a Single-GPU Inference Sequence Exceeding 10,000](https://www.hpc-ai.tech/blog/use-a-laptop-to-analyze-90-of-proteins-with-a-single-gpu-inference-sequence-exceeding)
|
||||
* [2022/10] [Embedding Training With 1% GPU Memory and 100 Times Less Budget for Super-Large Recommendation Model](https://www.hpc-ai.tech/blog/embedding-training-with-1-gpu-memory-and-10-times-less-budget-an-open-source-solution-for)
|
||||
* [2022/09] [HPC-AI Tech Completes $6 Million Seed and Angel Round Fundraising](https://www.hpc-ai.tech/blog/hpc-ai-tech-completes-6-million-seed-and-angel-round-fundraising-led-by-bluerun-ventures-in-the)
|
||||
|
||||
## Table of Contents
|
||||
@@ -64,6 +64,7 @@
|
||||
<li>
|
||||
<a href="#Colossal-AI-in-the-Real-World">Colossal-AI for Real World Applications</a>
|
||||
<ul>
|
||||
<li><a href="#ChatGPT">ChatGPT: Low-cost ChatGPT Equivalent Implementation Process</a></li>
|
||||
<li><a href="#AIGC">AIGC: Acceleration of Stable Diffusion</a></li>
|
||||
<li><a href="#Biomedicine">Biomedicine: Acceleration of AlphaFold Protein Structure</a></li>
|
||||
</ul>
|
||||
@@ -211,6 +212,30 @@ Please visit our [documentation](https://www.colossalai.org/) and [examples](htt
|
||||
<p align="right">(<a href="#top">back to top</a>)</p>
|
||||
|
||||
## Colossal-AI in the Real World
|
||||
### ChatGPT
|
||||
A low-cost [ChatGPT](https://openai.com/blog/chatgpt/) equivalent implementation process. [[code]](https://github.com/hpcaitech/ColossalAI/tree/main/applications/ChatGPT) [[blog]](https://www.hpc-ai.tech/blog/colossal-ai-chatgpt)
|
||||
<p id="ChatGPT_scaling" align="center">
|
||||
<img src="https://raw.githubusercontent.com/hpcaitech/public_assets/main/applications/chatgpt/ChatGPT%20scaling.png" width=800/>
|
||||
</p>
|
||||
|
||||
- Up to 7.73 times faster for single server training and 1.42 times faster for single-GPU inference
|
||||
|
||||
<p id="ChatGPT-1GPU" align="center">
|
||||
<img src="https://raw.githubusercontent.com/hpcaitech/public_assets/main/applications/chatgpt/ChatGPT-1GPU.jpg" width=800/>
|
||||
</p>
|
||||
|
||||
- Up to 10.3x growth in model capacity on one GPU
|
||||
- A mini demo training process requires only 1.62GB of GPU memory (any consumer-grade GPU)
|
||||
|
||||
<p id="inference" align="center">
|
||||
<img src="https://raw.githubusercontent.com/hpcaitech/public_assets/main/applications/chatgpt/LoRA%20data.jpg" width=800/>
|
||||
</p>
|
||||
|
||||
- Increase the capacity of the fine-tuning model by up to 3.7 times on a single GPU
|
||||
- Keep in a sufficiently high running speed
|
||||
|
||||
<p align="right">(<a href="#top">back to top</a>)</p>
|
||||
|
||||
|
||||
### AIGC
|
||||
Acceleration of AIGC (AI-Generated Content) models such as [Stable Diffusion v1](https://github.com/CompVis/stable-diffusion) and [Stable Diffusion v2](https://github.com/Stability-AI/stablediffusion).
|
||||
|
Reference in New Issue
Block a user