mirror of
https://github.com/hpcaitech/ColossalAI.git
synced 2025-08-02 00:01:52 +00:00
[ddp] refactor ColoDDP and ZeroDDP (#1146)
* ColoDDP supports overwriting default process group * rename ColoDDPV2 to ZeroDDP * add docstr for ZeroDDP * polish docstr
This commit is contained in:
parent
0e4e62d30d
commit
8106d7b8c7
@ -1,3 +1,3 @@
|
||||
from .data_parallel import ColoDDP, ColoDDPV2
|
||||
from .data_parallel import ColoDDP, ZeroDDP
|
||||
|
||||
__all__ = ['ColoDDP', 'ColoDDPV2']
|
||||
__all__ = ['ColoDDP', 'ZeroDDP']
|
||||
|
@ -8,7 +8,7 @@ from colossalai.zero.utils.zero_hook_v2 import ZeROHookV2
|
||||
from colossalai.tensor.chunk import TensorState, Chunk
|
||||
from colossalai.tensor.param_op_hook import ParamOpHookManager
|
||||
from colossalai.gemini.gemini_mgr import GeminiManager
|
||||
from typing import Dict, Iterable, List
|
||||
from typing import Dict, Iterable, List, Optional
|
||||
from colossalai.logging import get_dist_logger
|
||||
from collections import OrderedDict
|
||||
from colossalai.tensor.colo_parameter import ColoParameter
|
||||
@ -38,12 +38,37 @@ def _cast_float(args, dtype: torch.dtype):
|
||||
|
||||
|
||||
class ColoDDP(torch.nn.Module):
|
||||
"""Distributed data parallel for ColoTensor. Nested ColoDDP is not supported now.
|
||||
|
||||
def __init__(self, module: torch.nn.Module) -> None:
|
||||
Example::
|
||||
>>> from colossalai.core import global_context as gpc
|
||||
>>> from colossalai.context import ParallelMode
|
||||
>>> model = torch.nn.Linear(20, 1)
|
||||
>>> model = ColoDDP(model)
|
||||
>>> // model = ColoDDP(model, process_group=gpc.get_group(ParallelMode.DATA), cpu_process_group=gpc.get_cpu_group(ParallelMode.DATA))
|
||||
>>> logits = model(x)
|
||||
>>> loss = criterion(logits, labels)
|
||||
>>> model.backward(loss)
|
||||
|
||||
Args:
|
||||
module (torch.nn.Module): Module to apply DDP.
|
||||
process_group (Optional[dist.ProcessGroup], optional): The process group which DDP uses.
|
||||
If it's None, the default data parallel group will be used. Defaults to None.
|
||||
process_group (Optional[dist.ProcessGroup], optional): The process group which DDP uses for those parameters on CPU.
|
||||
If it's None, the default CPU data parallel group will be used. Defaults to None.
|
||||
"""
|
||||
|
||||
def __init__(self,
|
||||
module: torch.nn.Module,
|
||||
process_group: Optional[dist.ProcessGroup] = None,
|
||||
cpu_process_group: Optional[dist.ProcessGroup] = None) -> None:
|
||||
assert not isinstance(module, ColoDDP)
|
||||
super().__init__()
|
||||
self.module = module
|
||||
self.comm_stream: torch.cuda.Stream = torch.cuda.Stream()
|
||||
self.dp_world_size = gpc.get_world_size(ParallelMode.DATA)
|
||||
self.process_group = process_group or gpc.get_group(ParallelMode.DATA)
|
||||
self.cpu_process_group = cpu_process_group or gpc.get_cpu_group(ParallelMode.DATA)
|
||||
self.dp_world_size = self.process_group.size()
|
||||
for p in module.parameters():
|
||||
if getattr(p, '_ddp_to_ignore', False):
|
||||
continue
|
||||
@ -77,8 +102,7 @@ class ColoDDP(torch.nn.Module):
|
||||
grad = grad / self.dp_world_size
|
||||
self.comm_stream.wait_stream(torch.cuda.current_stream())
|
||||
with torch.cuda.stream(self.comm_stream):
|
||||
group = gpc.get_group(ParallelMode.DATA)
|
||||
dist.all_reduce(grad, group=group)
|
||||
dist.all_reduce(grad, group=self.process_group)
|
||||
ColoDDP._save_grad(p, grad)
|
||||
grad.record_stream(self.comm_stream)
|
||||
else:
|
||||
@ -86,8 +110,7 @@ class ColoDDP(torch.nn.Module):
|
||||
return empty_grad
|
||||
|
||||
else:
|
||||
group = gpc.get_cpu_group(ParallelMode.DATA)
|
||||
dist.all_reduce(grad, group=group)
|
||||
dist.all_reduce(grad, group=self.cpu_process_group)
|
||||
return grad
|
||||
|
||||
@staticmethod
|
||||
@ -136,7 +159,27 @@ class ColoDDP(torch.nn.Module):
|
||||
return self.module.load_state_dict(state_dict, strict)
|
||||
|
||||
|
||||
class ColoDDPV2(ColoDDP):
|
||||
class ZeroDDP(ColoDDP):
|
||||
"""ZeRO-DP for ColoTensor. Nested ZeroDDP is not supported now.
|
||||
We can configure chunk and gemini via ChunkManager and GeminiManager respectively.
|
||||
For more details, see the API reference of ``ChunkManager`` and ``GeminiManager``.
|
||||
|
||||
Example::
|
||||
>>> model = torch.nn.Linear(20, 1)
|
||||
>>> placement_policy = 'cuda'
|
||||
>>> chunk_size = ChunkManager.search_chunk_size(model, search_range, n_grids) if use_chunk else None
|
||||
>>> chunk_manager = ChunkManager(chunk_size, enable_distributed_storage=use_zero, init_device=GeminiManager.get_default_device(placement_policy))
|
||||
>>> gemini_manager = GeminiManager(placement_policy, chunk_manager)
|
||||
>>> model = ZeroDDP(model, gemini_manager)
|
||||
>>> logits = model(x)
|
||||
>>> loss = criterion(logits, labels)
|
||||
>>> model.backward(loss)
|
||||
|
||||
Args:
|
||||
module (torch.nn.Module): Module to apply ZeRO-DP.
|
||||
gemini_manager (GeminiManager): Manages the chunk manager and heterogeneous momery space.
|
||||
For more details, see the API reference of ``GeminiManager``.
|
||||
"""
|
||||
|
||||
def __init__(self, module: torch.nn.Module, gemini_manager: GeminiManager) -> None:
|
||||
super().__init__(module.half())
|
||||
|
@ -2,7 +2,7 @@ import torch
|
||||
import torch.distributed as dist
|
||||
from enum import Enum
|
||||
from torch.optim import Optimizer
|
||||
from colossalai.nn.parallel.data_parallel import ColoDDPV2
|
||||
from colossalai.nn.parallel.data_parallel import ZeroDDP
|
||||
from typing import Dict
|
||||
from colossalai.amp.naive_amp.grad_scaler import DynamicGradScaler
|
||||
from colossalai.logging import get_dist_logger
|
||||
@ -19,7 +19,7 @@ class ZeroOptimizer(ColossalaiOptimizer):
|
||||
|
||||
def __init__(self,
|
||||
optim: Optimizer,
|
||||
module: ColoDDPV2,
|
||||
module: ZeroDDP,
|
||||
gpu_margin_mem_ratio: float = 0.0,
|
||||
initial_scale: float = 2**32,
|
||||
min_scale: float = 1,
|
||||
@ -29,7 +29,7 @@ class ZeroOptimizer(ColossalaiOptimizer):
|
||||
hysteresis: int = 2,
|
||||
max_scale: float = 2**32):
|
||||
super().__init__(optim)
|
||||
assert isinstance(module, ColoDDPV2)
|
||||
assert isinstance(module, ZeroDDP)
|
||||
self.module = module
|
||||
self.gemini_manager = module.gemini_manager
|
||||
self.chunk_manager = self.gemini_manager.chunk_manager
|
||||
|
@ -8,7 +8,7 @@ from colossalai.utils import free_port
|
||||
from colossalai.utils.model.colo_init_context import ColoInitContext
|
||||
from colossalai.tensor import ChunkManager
|
||||
from functools import partial
|
||||
from colossalai.nn.parallel import ColoDDP, ColoDDPV2
|
||||
from colossalai.nn.parallel import ColoDDP, ZeroDDP
|
||||
from colossalai.gemini.gemini_mgr import GeminiManager
|
||||
from typing import Callable
|
||||
import torch.distributed as dist
|
||||
@ -30,11 +30,11 @@ def init_ddp(module: torch.nn.Module) -> ColoDDP:
|
||||
return ColoDDP(module)
|
||||
|
||||
|
||||
def init_ddpv2(module: torch.nn.Module, use_chunk: bool = False) -> ColoDDPV2:
|
||||
def init_ddpv2(module: torch.nn.Module, use_chunk: bool = False) -> ZeroDDP:
|
||||
chunk_size = ChunkManager.search_chunk_size(module, 64, 2) if use_chunk else None
|
||||
chunk_manager = ChunkManager(chunk_size)
|
||||
gemini_manager = GeminiManager('cuda', chunk_manager)
|
||||
return ColoDDPV2(module, gemini_manager)
|
||||
return ZeroDDP(module, gemini_manager)
|
||||
|
||||
|
||||
class Net(torch.nn.Module):
|
||||
@ -71,8 +71,8 @@ def run_dist(rank, world_size, port):
|
||||
colossalai.launch(config={}, rank=rank, world_size=world_size, host='localhost', port=port, backend='nccl')
|
||||
set_seed(dist.get_rank())
|
||||
run_fwd_bwd(ColoDDP, init_ddp)
|
||||
run_fwd_bwd(ColoDDPV2, partial(init_ddpv2, use_chunk=False))
|
||||
run_fwd_bwd(ColoDDPV2, partial(init_ddpv2, use_chunk=True))
|
||||
run_fwd_bwd(ZeroDDP, partial(init_ddpv2, use_chunk=False))
|
||||
run_fwd_bwd(ZeroDDP, partial(init_ddpv2, use_chunk=True))
|
||||
|
||||
|
||||
@pytest.mark.dist
|
||||
|
@ -9,7 +9,7 @@ from colossalai.utils.model.colo_init_context import ColoInitContext
|
||||
from colossalai.tensor import ChunkManager
|
||||
from functools import partial
|
||||
from tests.components_to_test.registry import non_distributed_component_funcs
|
||||
from colossalai.nn.parallel import ColoDDPV2, ColoDDP
|
||||
from colossalai.nn.parallel import ZeroDDP, ColoDDP
|
||||
from colossalai.gemini.gemini_mgr import GeminiManager
|
||||
from typing import Callable
|
||||
from collections import OrderedDict
|
||||
@ -25,11 +25,11 @@ def init_ddp(module: torch.nn.Module) -> ColoDDP:
|
||||
return ColoDDP(module)
|
||||
|
||||
|
||||
def init_ddpv2(module: torch.nn.Module, use_chunk: bool = False, use_zero: bool = False) -> ColoDDPV2:
|
||||
def init_ddpv2(module: torch.nn.Module, use_chunk: bool = False, use_zero: bool = False) -> ZeroDDP:
|
||||
chunk_size = ChunkManager.search_chunk_size(module, 64, 4) if use_chunk else None
|
||||
chunk_manager = ChunkManager(chunk_size, enable_distributed_storage=use_zero)
|
||||
gemini_manager = GeminiManager('cuda', chunk_manager)
|
||||
return ColoDDPV2(module, gemini_manager)
|
||||
return ZeroDDP(module, gemini_manager)
|
||||
|
||||
|
||||
def run_state_dict(ddp_init_func: Callable[[torch.nn.Module], ColoDDP]):
|
||||
|
@ -13,7 +13,7 @@ from functools import partial
|
||||
from _utils import tensor_equal, set_seed, tensor_shard_equal
|
||||
from tests.components_to_test.registry import non_distributed_component_funcs
|
||||
from torch.nn.parallel import DistributedDataParallel as DDP
|
||||
from colossalai.nn.parallel import ColoDDPV2
|
||||
from colossalai.nn.parallel import ZeroDDP
|
||||
from colossalai.nn.optimizer import HybridAdam
|
||||
from colossalai.zero import ZeroOptimizer
|
||||
from colossalai.testing import parameterize
|
||||
@ -87,7 +87,7 @@ def run_gpt(use_chunk, use_zero, placement_policy, tp_init_spec_func=None):
|
||||
enable_distributed_storage=use_zero,
|
||||
init_device=GeminiManager.get_default_device(placement_policy))
|
||||
gemini_manager = GeminiManager(placement_policy, chunk_manager)
|
||||
model = ColoDDPV2(model, gemini_manager)
|
||||
model = ZeroDDP(model, gemini_manager)
|
||||
optim = HybridAdam(model.parameters(), lr=1e-3)
|
||||
optim = ZeroOptimizer(optim, model, initial_scale=32)
|
||||
|
||||
|
Loading…
Reference in New Issue
Block a user