mirror of
https://github.com/hpcaitech/ColossalAI.git
synced 2025-06-24 14:33:20 +00:00
[shardformer] support whisper (#4212)
* support whisper * fix bug in vocabembedding * support downstream model of whisper * update readme
This commit is contained in:
parent
dd2bf02679
commit
9ee4ebea83
@ -102,7 +102,7 @@ We will follow this roadmap to develop Shardformer:
|
||||
- [ ] SwinTransformer
|
||||
- [ ] SwinTransformer V2
|
||||
- [ ] Audio
|
||||
- [ ] Whisper
|
||||
- [x] Whisper
|
||||
- [ ] Multi-modal
|
||||
- [ ] To be added
|
||||
|
||||
|
@ -202,7 +202,6 @@ class VocabParallelEmbedding1D(ParallelModule):
|
||||
super().__init__()
|
||||
self.num_embeddings = num_embeddings
|
||||
self.embedding_dim = embedding_dim
|
||||
self.padding_idx = padding_idx
|
||||
self.embed_args = args
|
||||
self.embed_kwargs = kwargs
|
||||
self.process_group = process_group
|
||||
@ -276,6 +275,15 @@ class VocabParallelEmbedding1D(ParallelModule):
|
||||
with torch.no_grad():
|
||||
self.weight[self.padding_idx - self.vocab_start_index].fill_(0)
|
||||
|
||||
def _select_padding_idx(self, padding_idx: int):
|
||||
# select padding index according to the rank
|
||||
if padding_idx is None:
|
||||
return None
|
||||
elif padding_idx < self.vocab_end_index and padding_idx >= self.vocab_start_index:
|
||||
return padding_idx - self.vocab_start_index
|
||||
else:
|
||||
return None
|
||||
|
||||
def forward(self, input_: Tensor) -> Tensor:
|
||||
# Build the mask.
|
||||
input_mask = (input_ < self.vocab_start_index) | (input_ >= self.vocab_end_index)
|
||||
|
@ -105,6 +105,14 @@ _POLICY_LIST = {
|
||||
"transformers.models.bloom.modeling_bloom.BloomForQuestionAnswering":
|
||||
PolicyLocation(file_name="bloom", class_name="BloomForQuestionAnsweringPolicy"),
|
||||
|
||||
# Whisper
|
||||
"transformers.models.whisper.modeling_whisper.WhisperModel":
|
||||
PolicyLocation(file_name="whisper", class_name="WhisperModelPolicy"),
|
||||
"transformers.models.whisper.modeling_whisper.WhisperForConditionalGeneration":
|
||||
PolicyLocation(file_name="whisper", class_name="WhisperForConditionalGenerationPolicy"),
|
||||
"transformers.models.whisper.modeling_whisper.WhisperForAudioClassification":
|
||||
PolicyLocation(file_name="whisper", class_name="WhisperForAudioClassificationPolicy"),
|
||||
|
||||
# Sam
|
||||
"transformers.models.sam.modeling_sam.SamModel":
|
||||
PolicyLocation(file_name="sam", class_name="SamModelPolicy"),
|
||||
|
232
colossalai/shardformer/policies/whisper.py
Normal file
232
colossalai/shardformer/policies/whisper.py
Normal file
@ -0,0 +1,232 @@
|
||||
import torch.nn as nn
|
||||
|
||||
import colossalai.shardformer.layer as col_nn
|
||||
|
||||
from .._utils import getattr_, setattr_
|
||||
from .basepolicy import ModulePolicyDescription, Policy, SubModuleReplacementDescription
|
||||
|
||||
__all__ = [
|
||||
'WhisperPolicy', 'WhisperModelPolicy', 'WhisperForConditionalGenerationPolicy', 'WhisperForAudioClassification'
|
||||
]
|
||||
|
||||
|
||||
class WhisperPolicy(Policy):
|
||||
|
||||
def config_sanity_check(self):
|
||||
pass
|
||||
|
||||
def preprocess(self):
|
||||
# reshape the embedding layer
|
||||
r"""
|
||||
Reshape the Embedding layer to make the embedding dimension divisible by world_size
|
||||
"""
|
||||
# TODO:
|
||||
vocab_size = self.model.config.vocab_size
|
||||
world_size = self.shard_config.tensor_parallel_size
|
||||
if vocab_size % world_size != 0:
|
||||
new_vocab_size = vocab_size + world_size - vocab_size % world_size
|
||||
self.model.resize_token_embeddings(new_vocab_size)
|
||||
return self.model
|
||||
|
||||
def module_policy(self):
|
||||
from transformers.models.whisper.modeling_whisper import (
|
||||
WhisperDecoder,
|
||||
WhisperDecoderLayer,
|
||||
WhisperEncoder,
|
||||
WhisperEncoderLayer,
|
||||
)
|
||||
|
||||
policy = {}
|
||||
|
||||
if self.shard_config.enable_tensor_parallelism:
|
||||
policy[WhisperEncoderLayer] = ModulePolicyDescription(attribute_replacement={
|
||||
"self_attn.embed_dim":
|
||||
self.model.config.d_model // self.shard_config.tensor_parallel_size,
|
||||
"self_attn.num_heads":
|
||||
self.model.config.encoder_attention_heads // self.shard_config.tensor_parallel_size,
|
||||
},
|
||||
sub_module_replacement=[
|
||||
SubModuleReplacementDescription(
|
||||
suffix="self_attn.q_proj",
|
||||
target_module=col_nn.Linear1D_Col,
|
||||
),
|
||||
SubModuleReplacementDescription(
|
||||
suffix="self_attn.k_proj",
|
||||
target_module=col_nn.Linear1D_Col,
|
||||
),
|
||||
SubModuleReplacementDescription(
|
||||
suffix="self_attn.v_proj",
|
||||
target_module=col_nn.Linear1D_Col,
|
||||
),
|
||||
SubModuleReplacementDescription(
|
||||
suffix="self_attn.out_proj",
|
||||
target_module=col_nn.Linear1D_Row,
|
||||
),
|
||||
SubModuleReplacementDescription(
|
||||
suffix="fc1",
|
||||
target_module=col_nn.Linear1D_Col,
|
||||
),
|
||||
SubModuleReplacementDescription(
|
||||
suffix="fc2",
|
||||
target_module=col_nn.Linear1D_Row,
|
||||
),
|
||||
])
|
||||
|
||||
policy[WhisperDecoderLayer] = ModulePolicyDescription(attribute_replacement={
|
||||
"self_attn.embed_dim":
|
||||
self.model.config.d_model // self.shard_config.tensor_parallel_size,
|
||||
"self_attn.num_heads":
|
||||
self.model.config.decoder_attention_heads // self.shard_config.tensor_parallel_size,
|
||||
"encoder_attn.embed_dim":
|
||||
self.model.config.d_model // self.shard_config.tensor_parallel_size,
|
||||
"encoder_attn.num_heads":
|
||||
self.model.config.encoder_attention_heads // self.shard_config.tensor_parallel_size,
|
||||
},
|
||||
sub_module_replacement=[
|
||||
SubModuleReplacementDescription(
|
||||
suffix="self_attn.q_proj",
|
||||
target_module=col_nn.Linear1D_Col,
|
||||
),
|
||||
SubModuleReplacementDescription(
|
||||
suffix="self_attn.k_proj",
|
||||
target_module=col_nn.Linear1D_Col,
|
||||
),
|
||||
SubModuleReplacementDescription(
|
||||
suffix="self_attn.v_proj",
|
||||
target_module=col_nn.Linear1D_Col,
|
||||
),
|
||||
SubModuleReplacementDescription(
|
||||
suffix="self_attn.out_proj",
|
||||
target_module=col_nn.Linear1D_Row,
|
||||
),
|
||||
SubModuleReplacementDescription(
|
||||
suffix="encoder_attn.q_proj",
|
||||
target_module=col_nn.Linear1D_Col,
|
||||
),
|
||||
SubModuleReplacementDescription(
|
||||
suffix="encoder_attn.k_proj",
|
||||
target_module=col_nn.Linear1D_Col,
|
||||
),
|
||||
SubModuleReplacementDescription(
|
||||
suffix="encoder_attn.v_proj",
|
||||
target_module=col_nn.Linear1D_Col,
|
||||
),
|
||||
SubModuleReplacementDescription(
|
||||
suffix="encoder_attn.out_proj",
|
||||
target_module=col_nn.Linear1D_Row,
|
||||
),
|
||||
SubModuleReplacementDescription(
|
||||
suffix="fc1",
|
||||
target_module=col_nn.Linear1D_Col,
|
||||
),
|
||||
SubModuleReplacementDescription(
|
||||
suffix="fc2",
|
||||
target_module=col_nn.Linear1D_Row,
|
||||
),
|
||||
])
|
||||
|
||||
policy[WhisperDecoder] = ModulePolicyDescription(sub_module_replacement=[
|
||||
SubModuleReplacementDescription(
|
||||
suffix="embed_tokens",
|
||||
target_module=col_nn.VocabParallelEmbedding1D,
|
||||
),
|
||||
])
|
||||
|
||||
# optimization configuration
|
||||
if self.shard_config.enable_fused_normalization:
|
||||
# Handle encoder layer
|
||||
self.append_or_create_submodule_replacement(description=[
|
||||
SubModuleReplacementDescription(
|
||||
suffix="self_attn_layer_norm",
|
||||
target_module=col_nn.FusedLayerNorm,
|
||||
),
|
||||
SubModuleReplacementDescription(
|
||||
suffix="final_layer_norm",
|
||||
target_module=col_nn.FusedLayerNorm,
|
||||
)
|
||||
],
|
||||
policy=policy,
|
||||
target_key=WhisperEncoderLayer)
|
||||
|
||||
# Handle decoder layer
|
||||
self.append_or_create_submodule_replacement(description=[
|
||||
SubModuleReplacementDescription(
|
||||
suffix="self_attn_layer_norm",
|
||||
target_module=col_nn.FusedLayerNorm,
|
||||
),
|
||||
SubModuleReplacementDescription(
|
||||
suffix="final_layer_norm",
|
||||
target_module=col_nn.FusedLayerNorm,
|
||||
)
|
||||
],
|
||||
policy=policy,
|
||||
target_key=WhisperDecoderLayer)
|
||||
|
||||
# handle encoder layer
|
||||
self.append_or_create_submodule_replacement(description=[
|
||||
SubModuleReplacementDescription(
|
||||
suffix="layer_norm",
|
||||
target_module=col_nn.FusedLayerNorm,
|
||||
)
|
||||
],
|
||||
policy=policy,
|
||||
target_key=WhisperEncoder)
|
||||
|
||||
# handle decoder layer
|
||||
self.append_or_create_submodule_replacement(description=[
|
||||
SubModuleReplacementDescription(
|
||||
suffix="layer_norm",
|
||||
target_module=col_nn.FusedLayerNorm,
|
||||
)
|
||||
],
|
||||
policy=policy,
|
||||
target_key=WhisperDecoder)
|
||||
return policy
|
||||
|
||||
def add_lm_head_policy(self, base_policy):
|
||||
from transformers.models.whisper.modeling_whisper import WhisperForConditionalGeneration
|
||||
|
||||
# optimize for tensor parallelism
|
||||
if self.shard_config.enable_tensor_parallelism:
|
||||
self.append_or_create_submodule_replacement(description=SubModuleReplacementDescription(
|
||||
suffix="proj_out", target_module=col_nn.Linear1D_Col, kwargs={"gather_output": True}),
|
||||
policy=base_policy,
|
||||
target_key=WhisperForConditionalGeneration)
|
||||
|
||||
return base_policy
|
||||
|
||||
def postprocess(self):
|
||||
return self.model
|
||||
|
||||
|
||||
# WhisperModel
|
||||
class WhisperModelPolicy(WhisperPolicy):
|
||||
|
||||
def __init__(self) -> None:
|
||||
super().__init__()
|
||||
|
||||
|
||||
# WhisperForConditionalGeneration
|
||||
class WhisperForConditionalGenerationPolicy(WhisperPolicy):
|
||||
|
||||
def __init__(self) -> None:
|
||||
super().__init__()
|
||||
|
||||
def module_policy(self):
|
||||
module_policy = super().module_policy()
|
||||
module_policy = self.add_lm_head_policy(module_policy)
|
||||
return module_policy
|
||||
|
||||
def postprocess(self):
|
||||
binding_map = {"model.decoder.embed_tokens.weight": "proj_out.weight"}
|
||||
for k, v in binding_map.items():
|
||||
param = getattr_(self.model, k)
|
||||
setattr_(self.model, v, param)
|
||||
return self.model
|
||||
|
||||
|
||||
# WhisperForAudioClassification
|
||||
class WhisperForAudioClassificationPolicy(WhisperPolicy):
|
||||
|
||||
def __init__(self) -> None:
|
||||
super().__init__()
|
@ -7,3 +7,4 @@ from .opt import *
|
||||
from .sam import *
|
||||
from .t5 import *
|
||||
from .vit import *
|
||||
from .whisper import *
|
||||
|
91
tests/kit/model_zoo/transformers/whisper.py
Normal file
91
tests/kit/model_zoo/transformers/whisper.py
Normal file
@ -0,0 +1,91 @@
|
||||
import torch
|
||||
import transformers
|
||||
|
||||
from ..registry import ModelAttribute, model_zoo
|
||||
|
||||
# ===============================
|
||||
# Register single-sentence Whisper
|
||||
# ===============================
|
||||
|
||||
|
||||
# define data gen function
|
||||
def data_gen():
|
||||
# Generated from following code snippet
|
||||
#
|
||||
# from transformers import AutoFeatureExtractor, WhisperModel
|
||||
# from datasets import load_dataset
|
||||
|
||||
# model = WhisperModel.from_pretrained("openai/whisper-base")
|
||||
# feature_extractor = AutoFeatureExtractor.from_pretrained("openai/whisper-base")
|
||||
# ds = load_dataset("hf-internal-testing/librispeech_asr_dummy", "clean", split="validation")
|
||||
# inputs = feature_extractor(ds[0]["audio"]["array"], return_tensors="pt")
|
||||
# input_features = inputs.input_features
|
||||
# decoder_input_ids = torch.tensor([[1, 1]]) * model.config.decoder_start_token_id
|
||||
|
||||
input_features = torch.randn(1, 80, 3000)
|
||||
decoder_input_ids = torch.tensor([[1, 1]]) * 50258
|
||||
return dict(input_features=input_features, decoder_input_ids=decoder_input_ids)
|
||||
|
||||
|
||||
def data_gen_for_conditional_generation():
|
||||
# labels (`torch.LongTensor` of shape `(batch_size, sequence_length)`, *optional*):
|
||||
# Labels for computing the language modeling loss. Indices should either be in `[0, ..., config.vocab_size]`
|
||||
# or -100 (see `input_ids` docstring). Tokens with indices set to `-100` are ignored (masked), the loss is
|
||||
# only computed for the tokens with labels in `[0, ..., config.vocab_size]`.
|
||||
data = data_gen()
|
||||
data['labels'] = torch.tensor([[0, 1]], dtype=torch.int64)
|
||||
return data
|
||||
|
||||
|
||||
def data_gen_for_audio_classification():
|
||||
# labels (`torch.LongTensor` of shape `(batch_size,)`, *optional*):
|
||||
# Labels for computing the sequence classification/regression loss. Indices should be in `[0, ...,
|
||||
# config.num_labels - 1]`. If `config.num_labels == 1` a regression loss is computed (Mean-Square loss), If
|
||||
# `config.num_labels > 1` a classification loss is computed (Cross-Entropy).
|
||||
# `WhisperForAudioClassification` does not need `decoder_input_ids`
|
||||
data = data_gen()
|
||||
data.pop('decoder_input_ids')
|
||||
data['labels'] = torch.tensor([1], dtype=torch.int64)
|
||||
return data
|
||||
|
||||
|
||||
# define output transform function
|
||||
output_transform_fn = lambda x: x
|
||||
|
||||
# define loss funciton
|
||||
loss_fn = lambda x: x.last_hidden_state.mean()
|
||||
loss_fn_attr = lambda x: x.loss
|
||||
|
||||
config = transformers.WhisperConfig(
|
||||
classifier_proj_size=256,
|
||||
d_model=256,
|
||||
decoder_attention_heads=4,
|
||||
decoder_ffn_dim=1536,
|
||||
decoder_layers=2,
|
||||
encoder_attention_heads=4,
|
||||
encoder_ffn_dim=1536,
|
||||
encoder_layers=2,
|
||||
vocab_size=51866,
|
||||
)
|
||||
|
||||
# register the Whisper variants
|
||||
model_zoo.register(name='transformers_whisper',
|
||||
model_fn=lambda: transformers.WhisperModel(config),
|
||||
data_gen_fn=data_gen,
|
||||
output_transform_fn=output_transform_fn,
|
||||
loss_fn=loss_fn,
|
||||
model_attribute=ModelAttribute(has_control_flow=True))
|
||||
|
||||
model_zoo.register(name='transformers_whisperForConditionalGeneration',
|
||||
model_fn=lambda: transformers.WhisperForConditionalGeneration(config),
|
||||
data_gen_fn=data_gen_for_conditional_generation,
|
||||
output_transform_fn=output_transform_fn,
|
||||
loss_fn=loss_fn_attr,
|
||||
model_attribute=ModelAttribute(has_control_flow=True))
|
||||
|
||||
model_zoo.register(name='transformers_whisperWhisperForAudioClassification',
|
||||
model_fn=lambda: transformers.WhisperForAudioClassification(config),
|
||||
data_gen_fn=data_gen_for_audio_classification,
|
||||
output_transform_fn=output_transform_fn,
|
||||
loss_fn=loss_fn_attr,
|
||||
model_attribute=ModelAttribute(has_control_flow=True))
|
101
tests/test_shardformer/test_model/test_shard_whisper.py
Normal file
101
tests/test_shardformer/test_model/test_shard_whisper.py
Normal file
@ -0,0 +1,101 @@
|
||||
import pytest
|
||||
import torch
|
||||
|
||||
import colossalai
|
||||
from colossalai.logging import disable_existing_loggers
|
||||
from colossalai.tensor.d_tensor.api import is_customized_distributed_tensor, is_distributed_tensor
|
||||
from colossalai.testing import (
|
||||
assert_hf_output_close,
|
||||
clear_cache_before_run,
|
||||
parameterize,
|
||||
rerun_if_address_is_in_use,
|
||||
spawn,
|
||||
)
|
||||
from tests.kit.model_zoo import model_zoo
|
||||
from tests.test_shardformer.test_model._utils import build_model, run_forward
|
||||
|
||||
|
||||
def check_forward_backward(org_model, sharded_model, data_gen_fn, output_transform_fn, loss_fn):
|
||||
# check forward
|
||||
org_output, org_loss, shard_output, shard_loss = run_forward(org_model, sharded_model, data_gen_fn,
|
||||
output_transform_fn, loss_fn)
|
||||
assert_hf_output_close(org_output, shard_output, ignore_keys='past_key_values')
|
||||
|
||||
# do backward
|
||||
org_loss.backward()
|
||||
shard_loss.backward()
|
||||
|
||||
assert torch.allclose(org_loss, shard_loss,
|
||||
atol=1e-5), f"shard model loss is not equal to orgin model loss\n{org_loss}\n{shard_loss}"
|
||||
|
||||
# check grad
|
||||
|
||||
if org_model.__class__.__name__ == 'WhisperForConditionalGeneration':
|
||||
whisper = org_model.model
|
||||
sharded_whisper = sharded_model.model
|
||||
else:
|
||||
whisper = org_model
|
||||
sharded_whisper = sharded_model
|
||||
|
||||
# compare self attention grad
|
||||
org_grad = whisper.encoder.layers[0].self_attn.q_proj.weight.grad
|
||||
shard_grad = sharded_whisper.encoder.layers[0].self_attn.q_proj.weight.grad
|
||||
shard_weight = sharded_whisper.encoder.layers[0].self_attn.q_proj.weight
|
||||
|
||||
if is_distributed_tensor(shard_weight) or is_customized_distributed_tensor(shard_weight):
|
||||
shard_grad_list = [torch.zeros([*shard_grad.shape]).to('cuda') for _ in range(2)]
|
||||
shard_grad = torch.distributed.all_gather(shard_grad_list, shard_grad)
|
||||
all_shard_grad = torch.cat(shard_grad_list, dim=0)
|
||||
else:
|
||||
all_shard_grad = shard_grad
|
||||
assert torch.allclose(org_grad, all_shard_grad,
|
||||
atol=1e-5), f"shard model grad is not equal to orgin model grad\n{org_grad}\n{all_shard_grad}"
|
||||
|
||||
# WhisperForAudioClassification does not have decoder and embedding layer
|
||||
if org_model.__class__.__name__ == 'WhisperForAudioClassification':
|
||||
return
|
||||
|
||||
# compare embedding grad
|
||||
org_grad = whisper.decoder.embed_tokens.weight.grad
|
||||
shard_grad = sharded_whisper.decoder.embed_tokens.weight.grad
|
||||
shard_weight = sharded_whisper.decoder.embed_tokens.weight
|
||||
|
||||
if is_distributed_tensor(shard_weight) or is_customized_distributed_tensor(shard_weight):
|
||||
shard_grad_list = [torch.zeros([*shard_grad.shape]).to('cuda') for _ in range(2)]
|
||||
shard_grad = torch.distributed.all_gather(shard_grad_list, shard_grad)
|
||||
all_shard_grad = torch.cat(shard_grad_list, dim=0)
|
||||
else:
|
||||
all_shard_grad = shard_grad
|
||||
|
||||
assert torch.allclose(org_grad, all_shard_grad,
|
||||
atol=1e-5), f"shard model grad is not equal to orgin model grad\n{org_grad}\n{all_shard_grad}"
|
||||
|
||||
|
||||
@parameterize('enable_fused_normalization', [True, False])
|
||||
@parameterize('enable_tensor_parallelism', [True, False])
|
||||
def run_whisper_test(enable_fused_normalization, enable_tensor_parallelism):
|
||||
sub_model_zoo = model_zoo.get_sub_registry('transformers_whisper')
|
||||
for name, (model_fn, data_gen_fn, output_transform_fn, loss_fn, _) in sub_model_zoo.items():
|
||||
org_model, sharded_model = build_model(model_fn,
|
||||
enable_fused_normalization=enable_fused_normalization,
|
||||
enable_tensor_parallelism=enable_tensor_parallelism)
|
||||
check_forward_backward(org_model, sharded_model, data_gen_fn, output_transform_fn, loss_fn)
|
||||
|
||||
torch.cuda.empty_cache()
|
||||
|
||||
|
||||
def check_whisper(rank, world_size, port):
|
||||
disable_existing_loggers()
|
||||
colossalai.launch(config={}, rank=rank, world_size=world_size, host='localhost', port=port, backend='nccl')
|
||||
run_whisper_test()
|
||||
|
||||
|
||||
@pytest.mark.dist
|
||||
@rerun_if_address_is_in_use()
|
||||
@clear_cache_before_run()
|
||||
def test_whisper():
|
||||
spawn(check_whisper, 2)
|
||||
|
||||
|
||||
if __name__ == "__main__":
|
||||
test_whisper()
|
Loading…
Reference in New Issue
Block a user